Recombinant feline leukemia virus genes detected in naturally occurring feline lymphosarcomas

Using a polymerase chain reaction strategy aimed at detecting recombinant feline leukemia virus (FeLV) genomes with 5' env sequences originating from an endogenous source and 3' env sequences resulting from FeLV subgroup A (FeLV-A), we detected recombinant proviruses in approximately three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Virology 1993-06, Vol.67 (6), p.3118-3125
Hauptverfasser: Sheets, R.L. (University of Southern California School of Medicine, Los Angeles, CA), Pandey, R, Jen, W.C, Roy-Burman, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a polymerase chain reaction strategy aimed at detecting recombinant feline leukemia virus (FeLV) genomes with 5' env sequences originating from an endogenous source and 3' env sequences resulting from FeLV subgroup A (FeLV-A), we detected recombinant proviruses in approximately three-fourths of naturally occurring thymic and alimentary feline lymphosarcomas (LSAs) and one-third of the multicentric LSAs from cats determined to be FeLV capsid antigen positive by immunofluorescence assay. In contrast, only 1 of 22 naturally arising FeLV-negative feline LSAs contained recombinant proviruses, and no recombinant env gene was detected in seven samples from normal tissues or tissues from FeLV-positive animals that died from other diseases. Four preferred structural motifs were identified in the recombinants; one is FeLV-B like (recognizing that FeLV-B itself is a product of recombination between FeLV-A and endogenous env genes), and three contain variable amounts of endogenous-like env genes before crossing over to FeLV-A-related sequences: (i) a combination of full-length and deleted env, genes with recombination at sites in the middle of the surface glycoprotein (SU), (ii) the entire SU encoded by endogenous-like sequences, and (iii) the entire SU and approximately half of the transmembrane protein encoded by endogenous-like sequences. Additionally, three of the thymic tumors contained recombinant proviruses with mutations in the vicinity of the major neutralizing determinant for the SU protein. These molecular genetic analyses of the LSA DNAs correspond to our previous results in vitro and support the occurrence and association of viral recombinants and mutants in vivo in FeLV-induced leukemogenesis
ISSN:0022-538X
1098-5514
DOI:10.1128/jvi.67.6.3118-3125.1993