[45] Measurement of spillover

This chapter discusses the measurement of spillover. At wavelengths greater than 680 nm, where the light absorbed by photosystem II is rate-limiting, a drop in the quantum yield for O2 evolution is observed (the red drop phenomenon). This effect does not occur when photosystem I is rate limiting. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 1980, Vol.69, p.474-482
1. Verfasser: Gross, Elizabeth L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue
container_start_page 474
container_title Methods in Enzymology
container_volume 69
creator Gross, Elizabeth L.
description This chapter discusses the measurement of spillover. At wavelengths greater than 680 nm, where the light absorbed by photosystem II is rate-limiting, a drop in the quantum yield for O2 evolution is observed (the red drop phenomenon). This effect does not occur when photosystem I is rate limiting. It is thought that, under these conditions, the excess excitation energy is transferred from photosystem II to photosystem I. This process is termed as “spillover.” The term spillover applies strictly to the case in which the energy absorbed by photosystem II is in excess and the photosystem II traps are closed. In this study, measurements of both chlorophyll a fluorescence and the quantum yields for electron transport reactions of the individual photosystems are used to monitor spillover. In addition, measurements of enhancement are also used. Chlorophyll a fluorescence at room temperature is measured. For most experiments, a chlorophyll concentration of 6.7 μg/ml is used. In this chapter chlorophyll a fluorescence at 77°K is also measured.
doi_str_mv 10.1016/S0076-6879(80)69047-8
format Article
fullrecord <record><control><sourceid>elsevier_fao_a</sourceid><recordid>TN_cdi_fao_agris_US8037786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0076687980690478</els_id><sourcerecordid>S0076687980690478</sourcerecordid><originalsourceid>FETCH-LOGICAL-e145t-653fad9b223411bcbc779aa26b7f7e6e9d102b02fbd8dd19580d670e9bf773963</originalsourceid><addsrcrecordid>eNo9kEtLA0EQhAcfYIj5A0IgRz2s9uzuTHefRIIviHiIOYkMMzs9shKzshPz-02M2Jc6FFVUf0qNNVxq0PZqDoC2sIR8TnBhGWos6EANtDFYIBMdqhEjgS41abbMR2rwHzlRo5w_YHsGsTI0UOPX2rxNnsTn714-ZbWedGmSv9rlsttIf6qOk19mGf3pUC3ubl-mD8Xs-f5xejMrRNdmXVhTJR85lGVVax2a0CCy96UNmFCscNRQBihTiBSjZkMQLYJwSNsZbKuhOtv3Jt85_9632S3mBBUi7czrvSnbBZtWepebVlaNxLaXZu1i1zoNbkfH_dJxu1cdgful46j6AXkaUwU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>[45] Measurement of spillover</title><source>Elsevier ScienceDirect Journals Complete</source><source>ScienceDirect eBooks</source><creator>Gross, Elizabeth L.</creator><creatorcontrib>Gross, Elizabeth L.</creatorcontrib><description>This chapter discusses the measurement of spillover. At wavelengths greater than 680 nm, where the light absorbed by photosystem II is rate-limiting, a drop in the quantum yield for O2 evolution is observed (the red drop phenomenon). This effect does not occur when photosystem I is rate limiting. It is thought that, under these conditions, the excess excitation energy is transferred from photosystem II to photosystem I. This process is termed as “spillover.” The term spillover applies strictly to the case in which the energy absorbed by photosystem II is in excess and the photosystem II traps are closed. In this study, measurements of both chlorophyll a fluorescence and the quantum yields for electron transport reactions of the individual photosystems are used to monitor spillover. In addition, measurements of enhancement are also used. Chlorophyll a fluorescence at room temperature is measured. For most experiments, a chlorophyll concentration of 6.7 μg/ml is used. In this chapter chlorophyll a fluorescence at 77°K is also measured.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121819699</identifier><identifier>ISBN: 0121819698</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(80)69047-8</identifier><language>eng</language><publisher>Elsevier Science &amp; Technology</publisher><ispartof>Methods in Enzymology, 1980, Vol.69, p.474-482</ispartof><rights>1980 Academic Press, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0076687980690478$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,779,780,784,793,3459,3550,11288,27924,27925,45810,45995</link.rule.ids></links><search><creatorcontrib>Gross, Elizabeth L.</creatorcontrib><title>[45] Measurement of spillover</title><title>Methods in Enzymology</title><description>This chapter discusses the measurement of spillover. At wavelengths greater than 680 nm, where the light absorbed by photosystem II is rate-limiting, a drop in the quantum yield for O2 evolution is observed (the red drop phenomenon). This effect does not occur when photosystem I is rate limiting. It is thought that, under these conditions, the excess excitation energy is transferred from photosystem II to photosystem I. This process is termed as “spillover.” The term spillover applies strictly to the case in which the energy absorbed by photosystem II is in excess and the photosystem II traps are closed. In this study, measurements of both chlorophyll a fluorescence and the quantum yields for electron transport reactions of the individual photosystems are used to monitor spillover. In addition, measurements of enhancement are also used. Chlorophyll a fluorescence at room temperature is measured. For most experiments, a chlorophyll concentration of 6.7 μg/ml is used. In this chapter chlorophyll a fluorescence at 77°K is also measured.</description><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121819699</isbn><isbn>0121819698</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLA0EQhAcfYIj5A0IgRz2s9uzuTHefRIIviHiIOYkMMzs9shKzshPz-02M2Jc6FFVUf0qNNVxq0PZqDoC2sIR8TnBhGWos6EANtDFYIBMdqhEjgS41abbMR2rwHzlRo5w_YHsGsTI0UOPX2rxNnsTn714-ZbWedGmSv9rlsttIf6qOk19mGf3pUC3ubl-mD8Xs-f5xejMrRNdmXVhTJR85lGVVax2a0CCy96UNmFCscNRQBihTiBSjZkMQLYJwSNsZbKuhOtv3Jt85_9632S3mBBUi7czrvSnbBZtWepebVlaNxLaXZu1i1zoNbkfH_dJxu1cdgful46j6AXkaUwU</recordid><startdate>1980</startdate><enddate>1980</enddate><creator>Gross, Elizabeth L.</creator><general>Elsevier Science &amp; Technology</general><scope>FBQ</scope></search><sort><creationdate>1980</creationdate><title>[45] Measurement of spillover</title><author>Gross, Elizabeth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e145t-653fad9b223411bcbc779aa26b7f7e6e9d102b02fbd8dd19580d670e9bf773963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gross, Elizabeth L.</creatorcontrib><collection>AGRIS</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gross, Elizabeth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[45] Measurement of spillover</atitle><jtitle>Methods in Enzymology</jtitle><date>1980</date><risdate>1980</risdate><volume>69</volume><spage>474</spage><epage>482</epage><pages>474-482</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121819699</isbn><isbn>0121819698</isbn><abstract>This chapter discusses the measurement of spillover. At wavelengths greater than 680 nm, where the light absorbed by photosystem II is rate-limiting, a drop in the quantum yield for O2 evolution is observed (the red drop phenomenon). This effect does not occur when photosystem I is rate limiting. It is thought that, under these conditions, the excess excitation energy is transferred from photosystem II to photosystem I. This process is termed as “spillover.” The term spillover applies strictly to the case in which the energy absorbed by photosystem II is in excess and the photosystem II traps are closed. In this study, measurements of both chlorophyll a fluorescence and the quantum yields for electron transport reactions of the individual photosystems are used to monitor spillover. In addition, measurements of enhancement are also used. Chlorophyll a fluorescence at room temperature is measured. For most experiments, a chlorophyll concentration of 6.7 μg/ml is used. In this chapter chlorophyll a fluorescence at 77°K is also measured.</abstract><pub>Elsevier Science &amp; Technology</pub><doi>10.1016/S0076-6879(80)69047-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 1980, Vol.69, p.474-482
issn 0076-6879
1557-7988
language eng
recordid cdi_fao_agris_US8037786
source Elsevier ScienceDirect Journals Complete; ScienceDirect eBooks
title [45] Measurement of spillover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B45%5D%20Measurement%20of%20spillover&rft.jtitle=Methods%20in%20Enzymology&rft.au=Gross,%20Elizabeth%20L.&rft.date=1980&rft.volume=69&rft.spage=474&rft.epage=482&rft.pages=474-482&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121819699&rft.isbn_list=0121819698&rft_id=info:doi/10.1016/S0076-6879(80)69047-8&rft_dat=%3Celsevier_fao_a%3ES0076687980690478%3C/elsevier_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0076687980690478&rfr_iscdi=true