p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer

Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (16), p.E1600-E1609
Hauptverfasser: McFadden, David G, Vernon, Amanda, Santiago, Philip M, Martinez-McFaline, Raul, Bhutkar, Arjun, Crowley, Denise M, McMahon, Martin, Sadow, Peter M, Jacks, Tyler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1609
container_issue 16
container_start_page E1600
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator McFadden, David G
Vernon, Amanda
Santiago, Philip M
Martinez-McFaline, Raul
Bhutkar, Arjun
Crowley, Denise M
McMahon, Martin
Sadow, Peter M
Jacks, Tyler
description Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF -mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated Braf ⱽ⁶⁰⁰ᴱ mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma.
doi_str_mv 10.1073/pnas.1404357111
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600144872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803105642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-d3a5a6777c115b36bdbeb50e148e6e5355026b1d78a05dfe66d9200b800a27143</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIptATQeWaNJMcq-fsw0SROEhRaKA1JbH49k4mrEHexYp_x4vuyyBxi7ud4_P8SHkFcIFguaXc7TlAgUILjUiPiErhDU2SqzhKVkBMN20gokTclrKPQCsZQvPyQkTlRYcV6TMklOXYlmyDbHQOadN9qWEFOmSqI12Hm1ZgqPL3UNOoafOZhdimiwNkVr6IduhmbaLjQud0rb4evZ-pGmgs53DONr88Gg3Op9fkGeDHYt_ebjPyO3H6-9Xn5ubr5--XL2_aZwEvjQ9t9IqrbVDlB1XXd_5ToJH0XrlJZcSmOqw160F2Q9eqX7NALoWwDJd452Rd3vdedtNvnc-1pCjmXOYqimTbDD_TmK4M5v004j6Uy2HKnB-EMjpx9aXxUyhOF8zRV-jGmyBI0glWEXf_ofep22ONZ5ByRCZrtYqdbmnXE6lZD8czSCYXaFmV6j5W2jdeP04w5H_02AF6AHYbR7lEA0qc43q96tv9shgk7GbHIq5_cZgN0MhWs34L09psSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521127200</pqid></control><display><type>article</type><title>p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McFadden, David G ; Vernon, Amanda ; Santiago, Philip M ; Martinez-McFaline, Raul ; Bhutkar, Arjun ; Crowley, Denise M ; McMahon, Martin ; Sadow, Peter M ; Jacks, Tyler</creator><creatorcontrib>McFadden, David G ; Vernon, Amanda ; Santiago, Philip M ; Martinez-McFaline, Raul ; Bhutkar, Arjun ; Crowley, Denise M ; McMahon, Martin ; Sadow, Peter M ; Jacks, Tyler</creatorcontrib><description>Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF -mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated Braf ⱽ⁶⁰⁰ᴱ mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1404357111</identifier><identifier>PMID: 24711431</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>animal models ; Animals ; Biological Sciences ; carcinoma ; Carcinoma - blood ; Carcinoma - drug therapy ; Carcinoma - genetics ; Carcinoma - pathology ; Carcinoma, Papillary ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Cell Proliferation - drug effects ; clinical trials ; disease incidence ; Disease Models, Animal ; Disease Progression ; gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Homozygote ; Humans ; immunohistochemistry ; Kinases ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - genetics ; metastasis ; Mice ; Mice, Transgenic ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase Kinases - antagonists &amp; inhibitors ; Mutation ; Mutation - genetics ; Neoplasm Grading ; oncogenes ; Oncology ; PNAS Plus ; Protein Kinase Inhibitors - therapeutic use ; Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors ; Proto-Oncogene Proteins B-raf - genetics ; remission ; Rodents ; sarcoma ; Signal transduction ; Survival analysis ; Thyroid cancer ; Thyroid Cancer, Papillary ; Thyroid Carcinoma, Anaplastic ; Thyroid Gland - drug effects ; Thyroid Gland - pathology ; thyroid neoplasms ; Thyroid Neoplasms - blood ; Thyroid Neoplasms - drug therapy ; Thyroid Neoplasms - genetics ; Thyroid Neoplasms - pathology ; Thyrotropin - blood ; transgenic animals ; Tumor Suppressor Protein p53 - metabolism ; ultrasonography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (16), p.E1600-E1609</ispartof><rights>Copyright National Academy of Sciences Apr 22, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-d3a5a6777c115b36bdbeb50e148e6e5355026b1d78a05dfe66d9200b800a27143</citedby><cites>FETCH-LOGICAL-c503t-d3a5a6777c115b36bdbeb50e148e6e5355026b1d78a05dfe66d9200b800a27143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000830/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000830/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24711431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McFadden, David G</creatorcontrib><creatorcontrib>Vernon, Amanda</creatorcontrib><creatorcontrib>Santiago, Philip M</creatorcontrib><creatorcontrib>Martinez-McFaline, Raul</creatorcontrib><creatorcontrib>Bhutkar, Arjun</creatorcontrib><creatorcontrib>Crowley, Denise M</creatorcontrib><creatorcontrib>McMahon, Martin</creatorcontrib><creatorcontrib>Sadow, Peter M</creatorcontrib><creatorcontrib>Jacks, Tyler</creatorcontrib><title>p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF -mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated Braf ⱽ⁶⁰⁰ᴱ mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma.</description><subject>animal models</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>carcinoma</subject><subject>Carcinoma - blood</subject><subject>Carcinoma - drug therapy</subject><subject>Carcinoma - genetics</subject><subject>Carcinoma - pathology</subject><subject>Carcinoma, Papillary</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Proliferation - drug effects</subject><subject>clinical trials</subject><subject>disease incidence</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Homozygote</subject><subject>Humans</subject><subject>immunohistochemistry</subject><subject>Kinases</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>metastasis</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase Kinases - antagonists &amp; inhibitors</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neoplasm Grading</subject><subject>oncogenes</subject><subject>Oncology</subject><subject>PNAS Plus</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>remission</subject><subject>Rodents</subject><subject>sarcoma</subject><subject>Signal transduction</subject><subject>Survival analysis</subject><subject>Thyroid cancer</subject><subject>Thyroid Cancer, Papillary</subject><subject>Thyroid Carcinoma, Anaplastic</subject><subject>Thyroid Gland - drug effects</subject><subject>Thyroid Gland - pathology</subject><subject>thyroid neoplasms</subject><subject>Thyroid Neoplasms - blood</subject><subject>Thyroid Neoplasms - drug therapy</subject><subject>Thyroid Neoplasms - genetics</subject><subject>Thyroid Neoplasms - pathology</subject><subject>Thyrotropin - blood</subject><subject>transgenic animals</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>ultrasonography</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtvFDEUhS0EIptATQeWaNJMcq-fsw0SROEhRaKA1JbH49k4mrEHexYp_x4vuyyBxi7ud4_P8SHkFcIFguaXc7TlAgUILjUiPiErhDU2SqzhKVkBMN20gokTclrKPQCsZQvPyQkTlRYcV6TMklOXYlmyDbHQOadN9qWEFOmSqI12Hm1ZgqPL3UNOoafOZhdimiwNkVr6IduhmbaLjQud0rb4evZ-pGmgs53DONr88Gg3Op9fkGeDHYt_ebjPyO3H6-9Xn5ubr5--XL2_aZwEvjQ9t9IqrbVDlB1XXd_5ToJH0XrlJZcSmOqw160F2Q9eqX7NALoWwDJd452Rd3vdedtNvnc-1pCjmXOYqimTbDD_TmK4M5v004j6Uy2HKnB-EMjpx9aXxUyhOF8zRV-jGmyBI0glWEXf_ofep22ONZ5ByRCZrtYqdbmnXE6lZD8czSCYXaFmV6j5W2jdeP04w5H_02AF6AHYbR7lEA0qc43q96tv9shgk7GbHIq5_cZgN0MhWs34L09psSI</recordid><startdate>20140422</startdate><enddate>20140422</enddate><creator>McFadden, David G</creator><creator>Vernon, Amanda</creator><creator>Santiago, Philip M</creator><creator>Martinez-McFaline, Raul</creator><creator>Bhutkar, Arjun</creator><creator>Crowley, Denise M</creator><creator>McMahon, Martin</creator><creator>Sadow, Peter M</creator><creator>Jacks, Tyler</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140422</creationdate><title>p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer</title><author>McFadden, David G ; Vernon, Amanda ; Santiago, Philip M ; Martinez-McFaline, Raul ; Bhutkar, Arjun ; Crowley, Denise M ; McMahon, Martin ; Sadow, Peter M ; Jacks, Tyler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-d3a5a6777c115b36bdbeb50e148e6e5355026b1d78a05dfe66d9200b800a27143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>animal models</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>carcinoma</topic><topic>Carcinoma - blood</topic><topic>Carcinoma - drug therapy</topic><topic>Carcinoma - genetics</topic><topic>Carcinoma - pathology</topic><topic>Carcinoma, Papillary</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Proliferation - drug effects</topic><topic>clinical trials</topic><topic>disease incidence</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Homozygote</topic><topic>Humans</topic><topic>immunohistochemistry</topic><topic>Kinases</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>metastasis</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase Kinases - antagonists &amp; inhibitors</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neoplasm Grading</topic><topic>oncogenes</topic><topic>Oncology</topic><topic>PNAS Plus</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>remission</topic><topic>Rodents</topic><topic>sarcoma</topic><topic>Signal transduction</topic><topic>Survival analysis</topic><topic>Thyroid cancer</topic><topic>Thyroid Cancer, Papillary</topic><topic>Thyroid Carcinoma, Anaplastic</topic><topic>Thyroid Gland - drug effects</topic><topic>Thyroid Gland - pathology</topic><topic>thyroid neoplasms</topic><topic>Thyroid Neoplasms - blood</topic><topic>Thyroid Neoplasms - drug therapy</topic><topic>Thyroid Neoplasms - genetics</topic><topic>Thyroid Neoplasms - pathology</topic><topic>Thyrotropin - blood</topic><topic>transgenic animals</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>ultrasonography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McFadden, David G</creatorcontrib><creatorcontrib>Vernon, Amanda</creatorcontrib><creatorcontrib>Santiago, Philip M</creatorcontrib><creatorcontrib>Martinez-McFaline, Raul</creatorcontrib><creatorcontrib>Bhutkar, Arjun</creatorcontrib><creatorcontrib>Crowley, Denise M</creatorcontrib><creatorcontrib>McMahon, Martin</creatorcontrib><creatorcontrib>Sadow, Peter M</creatorcontrib><creatorcontrib>Jacks, Tyler</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McFadden, David G</au><au>Vernon, Amanda</au><au>Santiago, Philip M</au><au>Martinez-McFaline, Raul</au><au>Bhutkar, Arjun</au><au>Crowley, Denise M</au><au>McMahon, Martin</au><au>Sadow, Peter M</au><au>Jacks, Tyler</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-22</date><risdate>2014</risdate><volume>111</volume><issue>16</issue><spage>E1600</spage><epage>E1609</epage><pages>E1600-E1609</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF -mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated Braf ⱽ⁶⁰⁰ᴱ mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24711431</pmid><doi>10.1073/pnas.1404357111</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (16), p.E1600-E1609
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201600144872
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects animal models
Animals
Biological Sciences
carcinoma
Carcinoma - blood
Carcinoma - drug therapy
Carcinoma - genetics
Carcinoma - pathology
Carcinoma, Papillary
Cell Differentiation - drug effects
Cell Differentiation - genetics
Cell Proliferation - drug effects
clinical trials
disease incidence
Disease Models, Animal
Disease Progression
gene expression
Gene Expression Regulation, Neoplastic - drug effects
Homozygote
Humans
immunohistochemistry
Kinases
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - genetics
metastasis
Mice
Mice, Transgenic
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase Kinases - antagonists & inhibitors
Mutation
Mutation - genetics
Neoplasm Grading
oncogenes
Oncology
PNAS Plus
Protein Kinase Inhibitors - therapeutic use
Proto-Oncogene Proteins B-raf - antagonists & inhibitors
Proto-Oncogene Proteins B-raf - genetics
remission
Rodents
sarcoma
Signal transduction
Survival analysis
Thyroid cancer
Thyroid Cancer, Papillary
Thyroid Carcinoma, Anaplastic
Thyroid Gland - drug effects
Thyroid Gland - pathology
thyroid neoplasms
Thyroid Neoplasms - blood
Thyroid Neoplasms - drug therapy
Thyroid Neoplasms - genetics
Thyroid Neoplasms - pathology
Thyrotropin - blood
transgenic animals
Tumor Suppressor Protein p53 - metabolism
ultrasonography
title p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p53%20constrains%20progression%20to%20anaplastic%20thyroid%20carcinoma%20in%20a%20Braf-mutant%20mouse%20model%20of%20papillary%20thyroid%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=McFadden,%20David%20G&rft.date=2014-04-22&rft.volume=111&rft.issue=16&rft.spage=E1600&rft.epage=E1609&rft.pages=E1600-E1609&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1404357111&rft_dat=%3Cproquest_fao_a%3E1803105642%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1521127200&rft_id=info:pmid/24711431&rfr_iscdi=true