Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects

We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (44), p.17691-17696
Hauptverfasser: Schmidt, Johan A., Johnson, Matthew S., Schinke, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17696
container_issue 44
container_start_page 17691
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Schmidt, Johan A.
Johnson, Matthew S.
Schinke, Reinhard
description We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.
doi_str_mv 10.1073/pnas.1213083110
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600141790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23754374</jstor_id><sourcerecordid>23754374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxSMEYsvCmRNgCSFx2OzO2I4Tc0BCFV_SShyWcrWcxGldJXbWThH973Fo6S6cbHl-fm9mXpY9R7hEKNnV6HS8RIoMKoYID7IFgsRccAkPswUALfOKU36WPYlxCwCyqOBxdkZZWQrK5SKbljrU3pHW-l-2NWTc-Mn3-2gj6YIfCBZAJk8oAnHDO3Jj3bo3E9GuJVOw43xvNto505N27_Rgm3hBVj_yOJpmCrvh4g9qY1IdDTFdl57j0-xRp_tonh3P82z16eP35Zf8-tvnr8sP13kjKE45q1kFpqkpxU6DRjBMi0o3RtQMSlmXRW0kai541VYlVljVnRCdRs7A1LRg59n7g-64qwfTNsZNQfdqDHbQYa-8turfirMbtfY_FatQcE6TwNujQPC3OxMnNdjYmL7XzvhdVFhBWrsokCX09X_o1u-CS-Mp5FyilBTLRF0dqCb4GIPpTs0gqDlRNSeq7hJNP17en-HE_40wAW-OgI6N7rugXWPjHVdKgELOyyBHbnY42SZfzhWWQmJCXhyQbZx8uG9VcFbyVH91qHfaK70OyWZ1QwEFAHJMRuw3E-7GMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449199217</pqid></control><display><type>article</type><title>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schmidt, Johan A. ; Johnson, Matthew S. ; Schinke, Reinhard</creator><creatorcontrib>Schmidt, Johan A. ; Johnson, Matthew S. ; Schinke, Reinhard</creatorcontrib><description>We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1213083110</identifier><identifier>PMID: 23776249</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>absorption ; Absorption spectra ; Atmosphere - analysis ; Atomic energy levels ; carbon ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon monoxide ; Carbon Monoxide - chemistry ; CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE ; dissociation ; Earth sciences ; Earth, ocean, space ; energy ; Exact sciences and technology ; Fractionation ; isotope fractionation ; Isotopes ; Isotopes - chemistry ; laboratory experimentation ; Lamps ; Mars ; mercury ; Models, Chemical ; Molecules ; oxygen ; Photolysis ; Physical Sciences ; Rotation ; stable isotopes ; Stratigraphy ; Temperature ; Ultraviolet radiation ; Ultraviolet Rays ; Vibration ; Vibrational states ; Wave packets ; Wavelengths ; wells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (44), p.17691-17696</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Oct 30, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</citedby><cites>FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23754374$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23754374$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27900595$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23776249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Johan A.</creatorcontrib><creatorcontrib>Johnson, Matthew S.</creatorcontrib><creatorcontrib>Schinke, Reinhard</creatorcontrib><title>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.</description><subject>absorption</subject><subject>Absorption spectra</subject><subject>Atmosphere - analysis</subject><subject>Atomic energy levels</subject><subject>carbon</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE</subject><subject>dissociation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>Fractionation</subject><subject>isotope fractionation</subject><subject>Isotopes</subject><subject>Isotopes - chemistry</subject><subject>laboratory experimentation</subject><subject>Lamps</subject><subject>Mars</subject><subject>mercury</subject><subject>Models, Chemical</subject><subject>Molecules</subject><subject>oxygen</subject><subject>Photolysis</subject><subject>Physical Sciences</subject><subject>Rotation</subject><subject>stable isotopes</subject><subject>Stratigraphy</subject><subject>Temperature</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Vibration</subject><subject>Vibrational states</subject><subject>Wave packets</subject><subject>Wavelengths</subject><subject>wells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2P0zAQxSMEYsvCmRNgCSFx2OzO2I4Tc0BCFV_SShyWcrWcxGldJXbWThH973Fo6S6cbHl-fm9mXpY9R7hEKNnV6HS8RIoMKoYID7IFgsRccAkPswUALfOKU36WPYlxCwCyqOBxdkZZWQrK5SKbljrU3pHW-l-2NWTc-Mn3-2gj6YIfCBZAJk8oAnHDO3Jj3bo3E9GuJVOw43xvNto505N27_Rgm3hBVj_yOJpmCrvh4g9qY1IdDTFdl57j0-xRp_tonh3P82z16eP35Zf8-tvnr8sP13kjKE45q1kFpqkpxU6DRjBMi0o3RtQMSlmXRW0kai541VYlVljVnRCdRs7A1LRg59n7g-64qwfTNsZNQfdqDHbQYa-8turfirMbtfY_FatQcE6TwNujQPC3OxMnNdjYmL7XzvhdVFhBWrsokCX09X_o1u-CS-Mp5FyilBTLRF0dqCb4GIPpTs0gqDlRNSeq7hJNP17en-HE_40wAW-OgI6N7rugXWPjHVdKgELOyyBHbnY42SZfzhWWQmJCXhyQbZx8uG9VcFbyVH91qHfaK70OyWZ1QwEFAHJMRuw3E-7GMg</recordid><startdate>20131029</startdate><enddate>20131029</enddate><creator>Schmidt, Johan A.</creator><creator>Johnson, Matthew S.</creator><creator>Schinke, Reinhard</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131029</creationdate><title>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</title><author>Schmidt, Johan A. ; Johnson, Matthew S. ; Schinke, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>absorption</topic><topic>Absorption spectra</topic><topic>Atmosphere - analysis</topic><topic>Atomic energy levels</topic><topic>carbon</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE</topic><topic>dissociation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>Fractionation</topic><topic>isotope fractionation</topic><topic>Isotopes</topic><topic>Isotopes - chemistry</topic><topic>laboratory experimentation</topic><topic>Lamps</topic><topic>Mars</topic><topic>mercury</topic><topic>Models, Chemical</topic><topic>Molecules</topic><topic>oxygen</topic><topic>Photolysis</topic><topic>Physical Sciences</topic><topic>Rotation</topic><topic>stable isotopes</topic><topic>Stratigraphy</topic><topic>Temperature</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Vibration</topic><topic>Vibrational states</topic><topic>Wave packets</topic><topic>Wavelengths</topic><topic>wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Johan A.</creatorcontrib><creatorcontrib>Johnson, Matthew S.</creatorcontrib><creatorcontrib>Schinke, Reinhard</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Johan A.</au><au>Johnson, Matthew S.</au><au>Schinke, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-29</date><risdate>2013</risdate><volume>110</volume><issue>44</issue><spage>17691</spage><epage>17696</epage><pages>17691-17696</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23776249</pmid><doi>10.1073/pnas.1213083110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (44), p.17691-17696
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201600141790
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects absorption
Absorption spectra
Atmosphere - analysis
Atomic energy levels
carbon
Carbon dioxide
Carbon Dioxide - chemistry
Carbon monoxide
Carbon Monoxide - chemistry
CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE
dissociation
Earth sciences
Earth, ocean, space
energy
Exact sciences and technology
Fractionation
isotope fractionation
Isotopes
Isotopes - chemistry
laboratory experimentation
Lamps
Mars
mercury
Models, Chemical
Molecules
oxygen
Photolysis
Physical Sciences
Rotation
stable isotopes
Stratigraphy
Temperature
Ultraviolet radiation
Ultraviolet Rays
Vibration
Vibrational states
Wave packets
Wavelengths
wells
title Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dioxide%20photolysis%20from%20150%20to%20210%20nm:%20Singlet%20and%20triplet%20channel%20dynamics,%20UV-spectrum,%20and%20isotope%20effects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schmidt,%20Johan%20A.&rft.date=2013-10-29&rft.volume=110&rft.issue=44&rft.spage=17691&rft.epage=17696&rft.pages=17691-17696&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1213083110&rft_dat=%3Cjstor_fao_a%3E23754374%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449199217&rft_id=info:pmid/23776249&rft_jstor_id=23754374&rfr_iscdi=true