Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects
We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (44), p.17691-17696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17696 |
---|---|
container_issue | 44 |
container_start_page | 17691 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Schmidt, Johan A. Johnson, Matthew S. Schinke, Reinhard |
description | We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient. |
doi_str_mv | 10.1073/pnas.1213083110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600141790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23754374</jstor_id><sourcerecordid>23754374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxSMEYsvCmRNgCSFx2OzO2I4Tc0BCFV_SShyWcrWcxGldJXbWThH973Fo6S6cbHl-fm9mXpY9R7hEKNnV6HS8RIoMKoYID7IFgsRccAkPswUALfOKU36WPYlxCwCyqOBxdkZZWQrK5SKbljrU3pHW-l-2NWTc-Mn3-2gj6YIfCBZAJk8oAnHDO3Jj3bo3E9GuJVOw43xvNto505N27_Rgm3hBVj_yOJpmCrvh4g9qY1IdDTFdl57j0-xRp_tonh3P82z16eP35Zf8-tvnr8sP13kjKE45q1kFpqkpxU6DRjBMi0o3RtQMSlmXRW0kai541VYlVljVnRCdRs7A1LRg59n7g-64qwfTNsZNQfdqDHbQYa-8turfirMbtfY_FatQcE6TwNujQPC3OxMnNdjYmL7XzvhdVFhBWrsokCX09X_o1u-CS-Mp5FyilBTLRF0dqCb4GIPpTs0gqDlRNSeq7hJNP17en-HE_40wAW-OgI6N7rugXWPjHVdKgELOyyBHbnY42SZfzhWWQmJCXhyQbZx8uG9VcFbyVH91qHfaK70OyWZ1QwEFAHJMRuw3E-7GMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449199217</pqid></control><display><type>article</type><title>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schmidt, Johan A. ; Johnson, Matthew S. ; Schinke, Reinhard</creator><creatorcontrib>Schmidt, Johan A. ; Johnson, Matthew S. ; Schinke, Reinhard</creatorcontrib><description>We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1213083110</identifier><identifier>PMID: 23776249</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>absorption ; Absorption spectra ; Atmosphere - analysis ; Atomic energy levels ; carbon ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon monoxide ; Carbon Monoxide - chemistry ; CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE ; dissociation ; Earth sciences ; Earth, ocean, space ; energy ; Exact sciences and technology ; Fractionation ; isotope fractionation ; Isotopes ; Isotopes - chemistry ; laboratory experimentation ; Lamps ; Mars ; mercury ; Models, Chemical ; Molecules ; oxygen ; Photolysis ; Physical Sciences ; Rotation ; stable isotopes ; Stratigraphy ; Temperature ; Ultraviolet radiation ; Ultraviolet Rays ; Vibration ; Vibrational states ; Wave packets ; Wavelengths ; wells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (44), p.17691-17696</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Oct 30, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</citedby><cites>FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23754374$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23754374$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27900595$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23776249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Johan A.</creatorcontrib><creatorcontrib>Johnson, Matthew S.</creatorcontrib><creatorcontrib>Schinke, Reinhard</creatorcontrib><title>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.</description><subject>absorption</subject><subject>Absorption spectra</subject><subject>Atmosphere - analysis</subject><subject>Atomic energy levels</subject><subject>carbon</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE</subject><subject>dissociation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>Fractionation</subject><subject>isotope fractionation</subject><subject>Isotopes</subject><subject>Isotopes - chemistry</subject><subject>laboratory experimentation</subject><subject>Lamps</subject><subject>Mars</subject><subject>mercury</subject><subject>Models, Chemical</subject><subject>Molecules</subject><subject>oxygen</subject><subject>Photolysis</subject><subject>Physical Sciences</subject><subject>Rotation</subject><subject>stable isotopes</subject><subject>Stratigraphy</subject><subject>Temperature</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Vibration</subject><subject>Vibrational states</subject><subject>Wave packets</subject><subject>Wavelengths</subject><subject>wells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2P0zAQxSMEYsvCmRNgCSFx2OzO2I4Tc0BCFV_SShyWcrWcxGldJXbWThH973Fo6S6cbHl-fm9mXpY9R7hEKNnV6HS8RIoMKoYID7IFgsRccAkPswUALfOKU36WPYlxCwCyqOBxdkZZWQrK5SKbljrU3pHW-l-2NWTc-Mn3-2gj6YIfCBZAJk8oAnHDO3Jj3bo3E9GuJVOw43xvNto505N27_Rgm3hBVj_yOJpmCrvh4g9qY1IdDTFdl57j0-xRp_tonh3P82z16eP35Zf8-tvnr8sP13kjKE45q1kFpqkpxU6DRjBMi0o3RtQMSlmXRW0kai541VYlVljVnRCdRs7A1LRg59n7g-64qwfTNsZNQfdqDHbQYa-8turfirMbtfY_FatQcE6TwNujQPC3OxMnNdjYmL7XzvhdVFhBWrsokCX09X_o1u-CS-Mp5FyilBTLRF0dqCb4GIPpTs0gqDlRNSeq7hJNP17en-HE_40wAW-OgI6N7rugXWPjHVdKgELOyyBHbnY42SZfzhWWQmJCXhyQbZx8uG9VcFbyVH91qHfaK70OyWZ1QwEFAHJMRuw3E-7GMg</recordid><startdate>20131029</startdate><enddate>20131029</enddate><creator>Schmidt, Johan A.</creator><creator>Johnson, Matthew S.</creator><creator>Schinke, Reinhard</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131029</creationdate><title>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</title><author>Schmidt, Johan A. ; Johnson, Matthew S. ; Schinke, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-3b380ecb221fa0a10e3a68ace6b3079b75be91a4648d871818bf66fa1430eb253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>absorption</topic><topic>Absorption spectra</topic><topic>Atmosphere - analysis</topic><topic>Atomic energy levels</topic><topic>carbon</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE</topic><topic>dissociation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>Fractionation</topic><topic>isotope fractionation</topic><topic>Isotopes</topic><topic>Isotopes - chemistry</topic><topic>laboratory experimentation</topic><topic>Lamps</topic><topic>Mars</topic><topic>mercury</topic><topic>Models, Chemical</topic><topic>Molecules</topic><topic>oxygen</topic><topic>Photolysis</topic><topic>Physical Sciences</topic><topic>Rotation</topic><topic>stable isotopes</topic><topic>Stratigraphy</topic><topic>Temperature</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Vibration</topic><topic>Vibrational states</topic><topic>Wave packets</topic><topic>Wavelengths</topic><topic>wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Johan A.</creatorcontrib><creatorcontrib>Johnson, Matthew S.</creatorcontrib><creatorcontrib>Schinke, Reinhard</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Johan A.</au><au>Johnson, Matthew S.</au><au>Schinke, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-29</date><risdate>2013</risdate><volume>110</volume><issue>44</issue><spage>17691</spage><epage>17696</epage><pages>17691-17696</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We present a first principles study of the carbon dioxide (CO ₂) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + [Formula] singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the [Formula] and [Formula] potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO ₂ isotopologues (¹²C ¹⁶O ₂, ¹²C ¹⁷O ¹⁶O, ¹²C ¹⁸O ¹⁶O, ¹³C ¹⁶O ₂, and ¹³C ¹⁸O ¹⁶O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO ₂ photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of ¹⁷O containing CO ₂ more efficient.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23776249</pmid><doi>10.1073/pnas.1213083110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (44), p.17691-17696 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201600141790 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | absorption Absorption spectra Atmosphere - analysis Atomic energy levels carbon Carbon dioxide Carbon Dioxide - chemistry Carbon monoxide Carbon Monoxide - chemistry CHEMISTRY AND APPLICATIONS IN NATURE OF MASS INDEPENDENT ISOTOPE EFFECTS SPECIAL FEATURE dissociation Earth sciences Earth, ocean, space energy Exact sciences and technology Fractionation isotope fractionation Isotopes Isotopes - chemistry laboratory experimentation Lamps Mars mercury Models, Chemical Molecules oxygen Photolysis Physical Sciences Rotation stable isotopes Stratigraphy Temperature Ultraviolet radiation Ultraviolet Rays Vibration Vibrational states Wave packets Wavelengths wells |
title | Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dioxide%20photolysis%20from%20150%20to%20210%20nm:%20Singlet%20and%20triplet%20channel%20dynamics,%20UV-spectrum,%20and%20isotope%20effects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schmidt,%20Johan%20A.&rft.date=2013-10-29&rft.volume=110&rft.issue=44&rft.spage=17691&rft.epage=17696&rft.pages=17691-17696&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1213083110&rft_dat=%3Cjstor_fao_a%3E23754374%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449199217&rft_id=info:pmid/23776249&rft_jstor_id=23754374&rfr_iscdi=true |