Pattern and synchrony of gene expression among sympatric marine microbial populations

Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-02, Vol.110 (6), p.E488-E497
Hauptverfasser: Ottesen, Elizabeth A, Young, Curtis R, Eppley, John M, Ryan, John P, Chavez, Francisco P, Scholin, Christopher A, DeLong, Edward F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E497
container_issue 6
container_start_page E488
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Ottesen, Elizabeth A
Young, Curtis R
Eppley, John M
Ryan, John P
Chavez, Francisco P
Scholin, Christopher A
DeLong, Edward F
description Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter , SAR86-cluster Gammaproteobacteria , and marine Euryarchaea . The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.
doi_str_mv 10.1073/pnas.1222099110
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600141085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1285082498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-e68db9736474cba89fc9095ea80719ca395a82a7f68ae8f11f02f6638c454b793</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBWALgehQWLODSGy6SXv9iB8bpKpqoVKlVoJZW47HmbpK7GAniPn3OJoytGxYeeHPR8f3IvQewykGQc_GYPIpJoSAUhjDC7TCoHDNmYKXaAVARC0ZYUfoTc4PAKAaCa_REaGUNYzKFVrfmWlyKVQmbKq8C_Y-xbCrYldtXXCV-zUml7OPBQwxbAsZRjMlb6vBJF_E4G2KrTd9NcZx7s1UbH6LXnWmz-7d43mM1leX3y--1je3X64vzm9q23Ax1Y7LTasE5Uww2xqpOqtKRWckCKysoaoxkhjRcWmc7DDugHScU2lL-1Yoeow-73PHuR3cxrowJdPrMfnSbqej8fr5TfD3eht_atpwSQUrASePASn-mF2e9OCzdX1vgotz1lgCxbhR0PyfEtmAJEzJQj_9Qx_inEKZxKKY5ErwpfzZXpUB5pxcd-iNQS_b1ct29d_tlhcfnn734P-s8wlYXh7iSh7Xl0wu4OMedCZqs00-6_U3ApgDYIZBNvQ3QBq0sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284869769</pqid></control><display><type>article</type><title>Pattern and synchrony of gene expression among sympatric marine microbial populations</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ottesen, Elizabeth A ; Young, Curtis R ; Eppley, John M ; Ryan, John P ; Chavez, Francisco P ; Scholin, Christopher A ; DeLong, Edward F</creator><creatorcontrib>Ottesen, Elizabeth A ; Young, Curtis R ; Eppley, John M ; Ryan, John P ; Chavez, Francisco P ; Scholin, Christopher A ; DeLong, Edward F</creatorcontrib><description>Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter , SAR86-cluster Gammaproteobacteria , and marine Euryarchaea . The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222099110</identifier><identifier>PMID: 23345438</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Archaea - classification ; Archaea - genetics ; Archaea - isolation &amp; purification ; Archaea - metabolism ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; Biodiversity ; Biological Sciences ; California ; Circadian Rhythm - genetics ; Ecosystem ; energy ; gamma-Proteobacteria ; Gene expression ; Gene Expression Profiling ; gene expression regulation ; genes ; Genomes ; habitats ; heterotrophs ; messenger RNA ; Metagenome - genetics ; microbial communities ; microorganisms ; Photosynthesis ; Phylogeny ; Physical Sciences ; Phytoplankton - classification ; Phytoplankton - genetics ; Phytoplankton - isolation &amp; purification ; Plankton ; Plankton - classification ; Plankton - genetics ; Plankton - isolation &amp; purification ; PNAS Plus ; Ribonucleic acid ; RNA ; robots ; Seawater - microbiology ; Synechococcus ; Synechococcus - genetics ; Synechococcus - metabolism ; Transcriptome ; transcriptomics ; Water Microbiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (6), p.E488-E497</ispartof><rights>Copyright National Academy of Sciences Feb 5, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-e68db9736474cba89fc9095ea80719ca395a82a7f68ae8f11f02f6638c454b793</citedby><cites>FETCH-LOGICAL-c567t-e68db9736474cba89fc9095ea80719ca395a82a7f68ae8f11f02f6638c454b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568374/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568374/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23345438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ottesen, Elizabeth A</creatorcontrib><creatorcontrib>Young, Curtis R</creatorcontrib><creatorcontrib>Eppley, John M</creatorcontrib><creatorcontrib>Ryan, John P</creatorcontrib><creatorcontrib>Chavez, Francisco P</creatorcontrib><creatorcontrib>Scholin, Christopher A</creatorcontrib><creatorcontrib>DeLong, Edward F</creatorcontrib><title>Pattern and synchrony of gene expression among sympatric marine microbial populations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter , SAR86-cluster Gammaproteobacteria , and marine Euryarchaea . The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.</description><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation &amp; purification</subject><subject>Archaea - metabolism</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>California</subject><subject>Circadian Rhythm - genetics</subject><subject>Ecosystem</subject><subject>energy</subject><subject>gamma-Proteobacteria</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Genomes</subject><subject>habitats</subject><subject>heterotrophs</subject><subject>messenger RNA</subject><subject>Metagenome - genetics</subject><subject>microbial communities</subject><subject>microorganisms</subject><subject>Photosynthesis</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Phytoplankton - classification</subject><subject>Phytoplankton - genetics</subject><subject>Phytoplankton - isolation &amp; purification</subject><subject>Plankton</subject><subject>Plankton - classification</subject><subject>Plankton - genetics</subject><subject>Plankton - isolation &amp; purification</subject><subject>PNAS Plus</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>robots</subject><subject>Seawater - microbiology</subject><subject>Synechococcus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>Water Microbiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAUBWALgehQWLODSGy6SXv9iB8bpKpqoVKlVoJZW47HmbpK7GAniPn3OJoytGxYeeHPR8f3IvQewykGQc_GYPIpJoSAUhjDC7TCoHDNmYKXaAVARC0ZYUfoTc4PAKAaCa_REaGUNYzKFVrfmWlyKVQmbKq8C_Y-xbCrYldtXXCV-zUml7OPBQwxbAsZRjMlb6vBJF_E4G2KrTd9NcZx7s1UbH6LXnWmz-7d43mM1leX3y--1je3X64vzm9q23Ax1Y7LTasE5Uww2xqpOqtKRWckCKysoaoxkhjRcWmc7DDugHScU2lL-1Yoeow-73PHuR3cxrowJdPrMfnSbqej8fr5TfD3eht_atpwSQUrASePASn-mF2e9OCzdX1vgotz1lgCxbhR0PyfEtmAJEzJQj_9Qx_inEKZxKKY5ErwpfzZXpUB5pxcd-iNQS_b1ct29d_tlhcfnn734P-s8wlYXh7iSh7Xl0wu4OMedCZqs00-6_U3ApgDYIZBNvQ3QBq0sg</recordid><startdate>20130205</startdate><enddate>20130205</enddate><creator>Ottesen, Elizabeth A</creator><creator>Young, Curtis R</creator><creator>Eppley, John M</creator><creator>Ryan, John P</creator><creator>Chavez, Francisco P</creator><creator>Scholin, Christopher A</creator><creator>DeLong, Edward F</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130205</creationdate><title>Pattern and synchrony of gene expression among sympatric marine microbial populations</title><author>Ottesen, Elizabeth A ; Young, Curtis R ; Eppley, John M ; Ryan, John P ; Chavez, Francisco P ; Scholin, Christopher A ; DeLong, Edward F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-e68db9736474cba89fc9095ea80719ca395a82a7f68ae8f11f02f6638c454b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation &amp; purification</topic><topic>Archaea - metabolism</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>California</topic><topic>Circadian Rhythm - genetics</topic><topic>Ecosystem</topic><topic>energy</topic><topic>gamma-Proteobacteria</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Genomes</topic><topic>habitats</topic><topic>heterotrophs</topic><topic>messenger RNA</topic><topic>Metagenome - genetics</topic><topic>microbial communities</topic><topic>microorganisms</topic><topic>Photosynthesis</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Phytoplankton - classification</topic><topic>Phytoplankton - genetics</topic><topic>Phytoplankton - isolation &amp; purification</topic><topic>Plankton</topic><topic>Plankton - classification</topic><topic>Plankton - genetics</topic><topic>Plankton - isolation &amp; purification</topic><topic>PNAS Plus</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>robots</topic><topic>Seawater - microbiology</topic><topic>Synechococcus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ottesen, Elizabeth A</creatorcontrib><creatorcontrib>Young, Curtis R</creatorcontrib><creatorcontrib>Eppley, John M</creatorcontrib><creatorcontrib>Ryan, John P</creatorcontrib><creatorcontrib>Chavez, Francisco P</creatorcontrib><creatorcontrib>Scholin, Christopher A</creatorcontrib><creatorcontrib>DeLong, Edward F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ottesen, Elizabeth A</au><au>Young, Curtis R</au><au>Eppley, John M</au><au>Ryan, John P</au><au>Chavez, Francisco P</au><au>Scholin, Christopher A</au><au>DeLong, Edward F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern and synchrony of gene expression among sympatric marine microbial populations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-02-05</date><risdate>2013</risdate><volume>110</volume><issue>6</issue><spage>E488</spage><epage>E497</epage><pages>E488-E497</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter , SAR86-cluster Gammaproteobacteria , and marine Euryarchaea . The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23345438</pmid><doi>10.1073/pnas.1222099110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (6), p.E488-E497
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201600141085
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Archaea - classification
Archaea - genetics
Archaea - isolation & purification
Archaea - metabolism
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Biodiversity
Biological Sciences
California
Circadian Rhythm - genetics
Ecosystem
energy
gamma-Proteobacteria
Gene expression
Gene Expression Profiling
gene expression regulation
genes
Genomes
habitats
heterotrophs
messenger RNA
Metagenome - genetics
microbial communities
microorganisms
Photosynthesis
Phylogeny
Physical Sciences
Phytoplankton - classification
Phytoplankton - genetics
Phytoplankton - isolation & purification
Plankton
Plankton - classification
Plankton - genetics
Plankton - isolation & purification
PNAS Plus
Ribonucleic acid
RNA
robots
Seawater - microbiology
Synechococcus
Synechococcus - genetics
Synechococcus - metabolism
Transcriptome
transcriptomics
Water Microbiology
title Pattern and synchrony of gene expression among sympatric marine microbial populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20and%20synchrony%20of%20gene%20expression%20among%20sympatric%20marine%20microbial%20populations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ottesen,%20Elizabeth%20A&rft.date=2013-02-05&rft.volume=110&rft.issue=6&rft.spage=E488&rft.epage=E497&rft.pages=E488-E497&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1222099110&rft_dat=%3Cproquest_fao_a%3E1285082498%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284869769&rft_id=info:pmid/23345438&rfr_iscdi=true