X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification
Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S -adenosy...
Gespeichert in:
Veröffentlicht in: | Proc. Natl. Acad. Sci. USA 2013-05, Vol.110 (21), p.8519-8524 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8524 |
---|---|
container_issue | 21 |
container_start_page | 8519 |
container_title | Proc. Natl. Acad. Sci. USA |
container_volume | 110 |
creator | Goldman, Peter J. Grove, Tyler L. Sites, Lauren A. McLaughlin, Martin I. Booker, Squire J. Drennan, Catherine L. |
description | Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S -adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6–1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ∼1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface. |
doi_str_mv | 10.1073/pnas.1302417110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_fao_agris_US201600137977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656755</jstor_id><sourcerecordid>42656755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617t-80ed329df61ca17da815729fa71273299c7e3bd2652c9934fbca32024958aaf23</originalsourceid><addsrcrecordid>eNpdkc-L1DAUx4Mo7uzo2ZNa9OKluy9Jm7QXYVnWH7DiQRe8hTdpOpuhTcYkHRjwjzdlxln1EELIJ5-X976EvKBwQUHyy63DeEE5sIpKSuERWVBoaSmqFh6TBQCTZVOx6oycx7gBgLZu4Ck5Y1zUwEWzIL9-lAH3RUxh0mkKpvB9ga646vwXk4qAndU4FKiT3WE0RTA7g0OcEXRogl9ZXUQ_TMl6V_Q-zGvcD-thr60zxdbHlAK6OOBMZNXoO9tn6Xx8Rp702WaeH_cluftw8_36U3n79ePn66vbUgsqU9mA6Thru15QjVR22NBasrZHSZnMF62Whq86Jmqm25ZX_UojZ3kmuVvEnvEleX_wbqfVaDptXP7ToLbBjhj2yqNV_944e6_Wfqe4EEKCyII3B0Fux6qobTL6XnvnjE6KQiOloBl6d6wS_M_JxKRGG7UZBnTGT1HRBngObc5tSd7-h278FPJ4MsVrAUxw3mbq8kDp4GMMpj_9mIKaNWqOXz3En1-8-rvRE_8n7wy8PgLzy5Mu-xhVTU3noi8PxCYmH05IlacrZF0_GHr0CtfBRnX3jQEVAJTLVkr-GxZPyrY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356026339</pqid></control><display><type>article</type><title>X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Goldman, Peter J. ; Grove, Tyler L. ; Sites, Lauren A. ; McLaughlin, Martin I. ; Booker, Squire J. ; Drennan, Catherine L.</creator><creatorcontrib>Goldman, Peter J. ; Grove, Tyler L. ; Sites, Lauren A. ; McLaughlin, Martin I. ; Booker, Squire J. ; Drennan, Catherine L. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S -adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6–1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ∼1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1302417110</identifier><identifier>PMID: 23650368</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino acids ; anaerobic conditions ; Anaerobiosis - physiology ; arylsulfatase ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Sciences ; Catalysis ; Clostridium perfringens ; Clostridium perfringens - genetics ; Clostridium perfringens - metabolism ; cysteine ; dehydrogenation ; Electron transfer ; Electrons ; Enzyme substrates ; Enzymes ; Free Radicals - metabolism ; Glycine - analogs & derivatives ; Glycine - genetics ; Glycine - metabolism ; Hydrogen ; hydrogen bonding ; Ligation ; Mutagenesis ; Oxidation ; Oxidation-Reduction ; oxygen ; post-translational modification ; Protein Processing, Post-Translational - physiology ; Protein Structure, Tertiary ; Proteins ; S-Adenosylmethionine - genetics ; S-Adenosylmethionine - metabolism ; serine ; Spasms ; X-radiation</subject><ispartof>Proc. Natl. Acad. Sci. USA, 2013-05, Vol.110 (21), p.8519-8524</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 21, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c617t-80ed329df61ca17da815729fa71273299c7e3bd2652c9934fbca32024958aaf23</citedby><cites>FETCH-LOGICAL-c617t-80ed329df61ca17da815729fa71273299c7e3bd2652c9934fbca32024958aaf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656755$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656755$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23650368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1087761$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldman, Peter J.</creatorcontrib><creatorcontrib>Grove, Tyler L.</creatorcontrib><creatorcontrib>Sites, Lauren A.</creatorcontrib><creatorcontrib>McLaughlin, Martin I.</creatorcontrib><creatorcontrib>Booker, Squire J.</creatorcontrib><creatorcontrib>Drennan, Catherine L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification</title><title>Proc. Natl. Acad. Sci. USA</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S -adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6–1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ∼1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface.</description><subject>Active sites</subject><subject>Amino acids</subject><subject>anaerobic conditions</subject><subject>Anaerobiosis - physiology</subject><subject>arylsulfatase</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Clostridium perfringens</subject><subject>Clostridium perfringens - genetics</subject><subject>Clostridium perfringens - metabolism</subject><subject>cysteine</subject><subject>dehydrogenation</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Free Radicals - metabolism</subject><subject>Glycine - analogs & derivatives</subject><subject>Glycine - genetics</subject><subject>Glycine - metabolism</subject><subject>Hydrogen</subject><subject>hydrogen bonding</subject><subject>Ligation</subject><subject>Mutagenesis</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>oxygen</subject><subject>post-translational modification</subject><subject>Protein Processing, Post-Translational - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>S-Adenosylmethionine - genetics</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>serine</subject><subject>Spasms</subject><subject>X-radiation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc-L1DAUx4Mo7uzo2ZNa9OKluy9Jm7QXYVnWH7DiQRe8hTdpOpuhTcYkHRjwjzdlxln1EELIJ5-X976EvKBwQUHyy63DeEE5sIpKSuERWVBoaSmqFh6TBQCTZVOx6oycx7gBgLZu4Ck5Y1zUwEWzIL9-lAH3RUxh0mkKpvB9ga646vwXk4qAndU4FKiT3WE0RTA7g0OcEXRogl9ZXUQ_TMl6V_Q-zGvcD-thr60zxdbHlAK6OOBMZNXoO9tn6Xx8Rp702WaeH_cluftw8_36U3n79ePn66vbUgsqU9mA6Thru15QjVR22NBasrZHSZnMF62Whq86Jmqm25ZX_UojZ3kmuVvEnvEleX_wbqfVaDptXP7ToLbBjhj2yqNV_944e6_Wfqe4EEKCyII3B0Fux6qobTL6XnvnjE6KQiOloBl6d6wS_M_JxKRGG7UZBnTGT1HRBngObc5tSd7-h278FPJ4MsVrAUxw3mbq8kDp4GMMpj_9mIKaNWqOXz3En1-8-rvRE_8n7wy8PgLzy5Mu-xhVTU3noi8PxCYmH05IlacrZF0_GHr0CtfBRnX3jQEVAJTLVkr-GxZPyrY</recordid><startdate>20130521</startdate><enddate>20130521</enddate><creator>Goldman, Peter J.</creator><creator>Grove, Tyler L.</creator><creator>Sites, Lauren A.</creator><creator>McLaughlin, Martin I.</creator><creator>Booker, Squire J.</creator><creator>Drennan, Catherine L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130521</creationdate><title>X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification</title><author>Goldman, Peter J. ; Grove, Tyler L. ; Sites, Lauren A. ; McLaughlin, Martin I. ; Booker, Squire J. ; Drennan, Catherine L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617t-80ed329df61ca17da815729fa71273299c7e3bd2652c9934fbca32024958aaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active sites</topic><topic>Amino acids</topic><topic>anaerobic conditions</topic><topic>Anaerobiosis - physiology</topic><topic>arylsulfatase</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Clostridium perfringens</topic><topic>Clostridium perfringens - genetics</topic><topic>Clostridium perfringens - metabolism</topic><topic>cysteine</topic><topic>dehydrogenation</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Free Radicals - metabolism</topic><topic>Glycine - analogs & derivatives</topic><topic>Glycine - genetics</topic><topic>Glycine - metabolism</topic><topic>Hydrogen</topic><topic>hydrogen bonding</topic><topic>Ligation</topic><topic>Mutagenesis</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>oxygen</topic><topic>post-translational modification</topic><topic>Protein Processing, Post-Translational - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>S-Adenosylmethionine - genetics</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>serine</topic><topic>Spasms</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Peter J.</creatorcontrib><creatorcontrib>Grove, Tyler L.</creatorcontrib><creatorcontrib>Sites, Lauren A.</creatorcontrib><creatorcontrib>McLaughlin, Martin I.</creatorcontrib><creatorcontrib>Booker, Squire J.</creatorcontrib><creatorcontrib>Drennan, Catherine L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. USA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Peter J.</au><au>Grove, Tyler L.</au><au>Sites, Lauren A.</au><au>McLaughlin, Martin I.</au><au>Booker, Squire J.</au><au>Drennan, Catherine L.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification</atitle><jtitle>Proc. Natl. Acad. Sci. USA</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-21</date><risdate>2013</risdate><volume>110</volume><issue>21</issue><spage>8519</spage><epage>8524</epage><pages>8519-8524</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S -adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6–1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ∼1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23650368</pmid><doi>10.1073/pnas.1302417110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proc. Natl. Acad. Sci. USA, 2013-05, Vol.110 (21), p.8519-8524 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201600137977 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Active sites Amino acids anaerobic conditions Anaerobiosis - physiology arylsulfatase Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Sciences Catalysis Clostridium perfringens Clostridium perfringens - genetics Clostridium perfringens - metabolism cysteine dehydrogenation Electron transfer Electrons Enzyme substrates Enzymes Free Radicals - metabolism Glycine - analogs & derivatives Glycine - genetics Glycine - metabolism Hydrogen hydrogen bonding Ligation Mutagenesis Oxidation Oxidation-Reduction oxygen post-translational modification Protein Processing, Post-Translational - physiology Protein Structure, Tertiary Proteins S-Adenosylmethionine - genetics S-Adenosylmethionine - metabolism serine Spasms X-radiation |
title | X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20structure%20of%20an%20AdoMet%20radical%20activase%20reveals%20an%20anaerobic%20solution%20for%20formylglycine%20posttranslational%20modification&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20USA&rft.au=Goldman,%20Peter%20J.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-05-21&rft.volume=110&rft.issue=21&rft.spage=8519&rft.epage=8524&rft.pages=8519-8524&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1302417110&rft_dat=%3Cjstor_osti_%3E42656755%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356026339&rft_id=info:pmid/23650368&rft_jstor_id=42656755&rfr_iscdi=true |