Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor

Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (21), p.8513-8518
Hauptverfasser: Lee, Jungsoon, Kim, Ji-Hyun, Biter, Amadeo B., Sielaff, Bernhard, Lee, Sukyeong, Tsai, Francis T. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation. Mapping the Hsp70-binding sites in yeast Hsp104 using peptide array technology and photo–cross-linking revealed a striking conservation of the primary Hsp70-binding motifs on the Hsp104 middle-domain across species, despite lack of sequence identity. Remarkably, inserting a Strep -Tactin binding motif at the spatially conserved Hsp70-binding site elicits the Hsp104 protein disaggregating activity that now depends on Strep- Tactin but no longer requires Hsp70/40. Consistent with a Strep -Tactin–dependent activation step, we found that full-length Hsp70 on its own could activate the Hsp104 hexamer by promoting intersubunit coordination, suggesting that Hsp70 is an activator of the Hsp104 motor.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1217988110