ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize
Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day l...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (28), p.E1913-E1921 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1921 |
---|---|
container_issue | 28 |
container_start_page | E1913 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Hung, Hsiao-Yi Shannon, Laura M Tian, Feng Bradbury, Peter J Chen, Charles Flint-Garcia, Sherry A McMullen, Michael D Ware, Doreen Buckler, Edward S Doebley, John F Holland, James B |
description | Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day lengths. Flowering time of teosinte and tropical maize is delayed under long day lengths, whereas temperate maize evolved a reduced sensitivity to photoperiod. We measured flowering time of the maize nested association and diverse association mapping panels in the field under both short and long day lengths, and of a maize-teosinte mapping population under long day lengths. Flowering time in maize is a complex trait affected by many genes and the environment. Photoperiod response is one component of flowering time involving a subset of flowering time genes whose effects are strongly influenced by day length. Genome-wide association and targeted high-resolution linkage mapping identified ZmCCT , a homologue of the rice photoperiod response regulator Ghd7, as the most important gene affecting photoperiod response in maize. Under long day lengths ZmCCT alleles from diverse teosintes are consistently expressed at higher levels and confer later flowering than temperate maize alleles. Many maize inbred lines, including some adapted to tropical regions, carry ZmCCT alleles with no sensitivity to day length. Indigenous farmers of the Americas were remarkably successful at selecting on genetic variation at key genes affecting the photoperiod response to create maize varieties adapted to vastly diverse environments despite the hindrance of the geographic axis of the Americas and the complex genetic control of flowering time. |
doi_str_mv | 10.1073/pnas.1203189109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201600129031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024643902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-87b56e15e232c230acd85fbc6b62bdc219b8c4ff0a2da5479272618180e793343</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCmRtE4tJL2rGdOPYFCa3Kh1SJA-2Fi-XYTtZVYgc7QVr-epzu0gIXLuPD_N6bGT-EXmG4wNDQy8mrdIEJUMwFBvEEbXLFJasEPEUbANKUvCLVCTpN6Q4ARM3hOTohpMGYE75B9tu43d4Uypti3tmit97OThetSi4VoSuM2peD9f28K5RR06xmF3yxeGPjsHe-v1dNIc0mjDZl6QFIU7TKrAajcj_tC_SsU0OyL4_vGbr9cHWz_VRef_n4efv-utQ10LnkTVszi2tLKNGEgtKG112rWctIazTBouW66jpQxKi6agRpCMMcc7CNoLSiZ-jdwXda2tEabf0c1SCn6EYV9zIoJ__ueLeTffghKRWsriAbnB8NYvi-5IPk6JK2w6C8DUuSeRTFjNUN-z8KpGIVFUAy-vYf9C4s0eefuKfqnJBYl788UDqGlKLtHvbGINe05Zq2fEw7K17_ee4D_zveDBRHYFU-2glJuLzCAtOMvDkgnQpS9dElefuVAGYAmIg8iv4CnHS5qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024542494</pqid></control><display><type>article</type><title>ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hung, Hsiao-Yi ; Shannon, Laura M ; Tian, Feng ; Bradbury, Peter J ; Chen, Charles ; Flint-Garcia, Sherry A ; McMullen, Michael D ; Ware, Doreen ; Buckler, Edward S ; Doebley, John F ; Holland, James B</creator><creatorcontrib>Hung, Hsiao-Yi ; Shannon, Laura M ; Tian, Feng ; Bradbury, Peter J ; Chen, Charles ; Flint-Garcia, Sherry A ; McMullen, Michael D ; Ware, Doreen ; Buckler, Edward S ; Doebley, John F ; Holland, James B</creatorcontrib><description>Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day lengths. Flowering time of teosinte and tropical maize is delayed under long day lengths, whereas temperate maize evolved a reduced sensitivity to photoperiod. We measured flowering time of the maize nested association and diverse association mapping panels in the field under both short and long day lengths, and of a maize-teosinte mapping population under long day lengths. Flowering time in maize is a complex trait affected by many genes and the environment. Photoperiod response is one component of flowering time involving a subset of flowering time genes whose effects are strongly influenced by day length. Genome-wide association and targeted high-resolution linkage mapping identified ZmCCT , a homologue of the rice photoperiod response regulator Ghd7, as the most important gene affecting photoperiod response in maize. Under long day lengths ZmCCT alleles from diverse teosintes are consistently expressed at higher levels and confer later flowering than temperate maize alleles. Many maize inbred lines, including some adapted to tropical regions, carry ZmCCT alleles with no sensitivity to day length. Indigenous farmers of the Americas were remarkably successful at selecting on genetic variation at key genes affecting the photoperiod response to create maize varieties adapted to vastly diverse environments despite the hindrance of the geographic axis of the Americas and the complex genetic control of flowering time.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1203189109</identifier><identifier>PMID: 22711828</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Biological Sciences ; Biological variation ; center of origin ; Central America ; chromosome mapping ; Chromosome Mapping - methods ; Chromosomes, Plant ; corn ; Crops ; farmers ; flowering ; Genes ; Genes, Plant ; Genetic diversity ; Genetic Variation ; Genome-Wide Association Study ; Genomes ; Genotype ; Haplotypes ; inbred lines ; latitude ; Mexico ; Models, Genetic ; Phenotype ; Photoperiod ; Plant Proteins - genetics ; Plant Proteins - metabolism ; PNAS Plus ; Quantitative Trait Loci ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; rice ; Time Factors ; tropics ; Zea ; Zea mays - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (28), p.E1913-E1921</ispartof><rights>Copyright National Academy of Sciences Jul 10, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-87b56e15e232c230acd85fbc6b62bdc219b8c4ff0a2da5479272618180e793343</citedby><cites>FETCH-LOGICAL-c503t-87b56e15e232c230acd85fbc6b62bdc219b8c4ff0a2da5479272618180e793343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396540/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396540/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22711828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Hsiao-Yi</creatorcontrib><creatorcontrib>Shannon, Laura M</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Bradbury, Peter J</creatorcontrib><creatorcontrib>Chen, Charles</creatorcontrib><creatorcontrib>Flint-Garcia, Sherry A</creatorcontrib><creatorcontrib>McMullen, Michael D</creatorcontrib><creatorcontrib>Ware, Doreen</creatorcontrib><creatorcontrib>Buckler, Edward S</creatorcontrib><creatorcontrib>Doebley, John F</creatorcontrib><creatorcontrib>Holland, James B</creatorcontrib><title>ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day lengths. Flowering time of teosinte and tropical maize is delayed under long day lengths, whereas temperate maize evolved a reduced sensitivity to photoperiod. We measured flowering time of the maize nested association and diverse association mapping panels in the field under both short and long day lengths, and of a maize-teosinte mapping population under long day lengths. Flowering time in maize is a complex trait affected by many genes and the environment. Photoperiod response is one component of flowering time involving a subset of flowering time genes whose effects are strongly influenced by day length. Genome-wide association and targeted high-resolution linkage mapping identified ZmCCT , a homologue of the rice photoperiod response regulator Ghd7, as the most important gene affecting photoperiod response in maize. Under long day lengths ZmCCT alleles from diverse teosintes are consistently expressed at higher levels and confer later flowering than temperate maize alleles. Many maize inbred lines, including some adapted to tropical regions, carry ZmCCT alleles with no sensitivity to day length. Indigenous farmers of the Americas were remarkably successful at selecting on genetic variation at key genes affecting the photoperiod response to create maize varieties adapted to vastly diverse environments despite the hindrance of the geographic axis of the Americas and the complex genetic control of flowering time.</description><subject>Alleles</subject><subject>Biological Sciences</subject><subject>Biological variation</subject><subject>center of origin</subject><subject>Central America</subject><subject>chromosome mapping</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes, Plant</subject><subject>corn</subject><subject>Crops</subject><subject>farmers</subject><subject>flowering</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Haplotypes</subject><subject>inbred lines</subject><subject>latitude</subject><subject>Mexico</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Photoperiod</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>PNAS Plus</subject><subject>Quantitative Trait Loci</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>rice</subject><subject>Time Factors</subject><subject>tropics</subject><subject>Zea</subject><subject>Zea mays - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotvCmRtE4tJL2rGdOPYFCa3Kh1SJA-2Fi-XYTtZVYgc7QVr-epzu0gIXLuPD_N6bGT-EXmG4wNDQy8mrdIEJUMwFBvEEbXLFJasEPEUbANKUvCLVCTpN6Q4ARM3hOTohpMGYE75B9tu43d4Uypti3tmit97OThetSi4VoSuM2peD9f28K5RR06xmF3yxeGPjsHe-v1dNIc0mjDZl6QFIU7TKrAajcj_tC_SsU0OyL4_vGbr9cHWz_VRef_n4efv-utQ10LnkTVszi2tLKNGEgtKG112rWctIazTBouW66jpQxKi6agRpCMMcc7CNoLSiZ-jdwXda2tEabf0c1SCn6EYV9zIoJ__ueLeTffghKRWsriAbnB8NYvi-5IPk6JK2w6C8DUuSeRTFjNUN-z8KpGIVFUAy-vYf9C4s0eefuKfqnJBYl788UDqGlKLtHvbGINe05Zq2fEw7K17_ee4D_zveDBRHYFU-2glJuLzCAtOMvDkgnQpS9dElefuVAGYAmIg8iv4CnHS5qg</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Hung, Hsiao-Yi</creator><creator>Shannon, Laura M</creator><creator>Tian, Feng</creator><creator>Bradbury, Peter J</creator><creator>Chen, Charles</creator><creator>Flint-Garcia, Sherry A</creator><creator>McMullen, Michael D</creator><creator>Ware, Doreen</creator><creator>Buckler, Edward S</creator><creator>Doebley, John F</creator><creator>Holland, James B</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120710</creationdate><title>ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize</title><author>Hung, Hsiao-Yi ; Shannon, Laura M ; Tian, Feng ; Bradbury, Peter J ; Chen, Charles ; Flint-Garcia, Sherry A ; McMullen, Michael D ; Ware, Doreen ; Buckler, Edward S ; Doebley, John F ; Holland, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-87b56e15e232c230acd85fbc6b62bdc219b8c4ff0a2da5479272618180e793343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Biological Sciences</topic><topic>Biological variation</topic><topic>center of origin</topic><topic>Central America</topic><topic>chromosome mapping</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes, Plant</topic><topic>corn</topic><topic>Crops</topic><topic>farmers</topic><topic>flowering</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Haplotypes</topic><topic>inbred lines</topic><topic>latitude</topic><topic>Mexico</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Photoperiod</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>PNAS Plus</topic><topic>Quantitative Trait Loci</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>rice</topic><topic>Time Factors</topic><topic>tropics</topic><topic>Zea</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Hsiao-Yi</creatorcontrib><creatorcontrib>Shannon, Laura M</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Bradbury, Peter J</creatorcontrib><creatorcontrib>Chen, Charles</creatorcontrib><creatorcontrib>Flint-Garcia, Sherry A</creatorcontrib><creatorcontrib>McMullen, Michael D</creatorcontrib><creatorcontrib>Ware, Doreen</creatorcontrib><creatorcontrib>Buckler, Edward S</creatorcontrib><creatorcontrib>Doebley, John F</creatorcontrib><creatorcontrib>Holland, James B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Hsiao-Yi</au><au>Shannon, Laura M</au><au>Tian, Feng</au><au>Bradbury, Peter J</au><au>Chen, Charles</au><au>Flint-Garcia, Sherry A</au><au>McMullen, Michael D</au><au>Ware, Doreen</au><au>Buckler, Edward S</au><au>Doebley, John F</au><au>Holland, James B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>109</volume><issue>28</issue><spage>E1913</spage><epage>E1921</epage><pages>E1913-E1921</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day lengths. Flowering time of teosinte and tropical maize is delayed under long day lengths, whereas temperate maize evolved a reduced sensitivity to photoperiod. We measured flowering time of the maize nested association and diverse association mapping panels in the field under both short and long day lengths, and of a maize-teosinte mapping population under long day lengths. Flowering time in maize is a complex trait affected by many genes and the environment. Photoperiod response is one component of flowering time involving a subset of flowering time genes whose effects are strongly influenced by day length. Genome-wide association and targeted high-resolution linkage mapping identified ZmCCT , a homologue of the rice photoperiod response regulator Ghd7, as the most important gene affecting photoperiod response in maize. Under long day lengths ZmCCT alleles from diverse teosintes are consistently expressed at higher levels and confer later flowering than temperate maize alleles. Many maize inbred lines, including some adapted to tropical regions, carry ZmCCT alleles with no sensitivity to day length. Indigenous farmers of the Americas were remarkably successful at selecting on genetic variation at key genes affecting the photoperiod response to create maize varieties adapted to vastly diverse environments despite the hindrance of the geographic axis of the Americas and the complex genetic control of flowering time.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22711828</pmid><doi>10.1073/pnas.1203189109</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (28), p.E1913-E1921 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201600129031 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alleles Biological Sciences Biological variation center of origin Central America chromosome mapping Chromosome Mapping - methods Chromosomes, Plant corn Crops farmers flowering Genes Genes, Plant Genetic diversity Genetic Variation Genome-Wide Association Study Genomes Genotype Haplotypes inbred lines latitude Mexico Models, Genetic Phenotype Photoperiod Plant Proteins - genetics Plant Proteins - metabolism PNAS Plus Quantitative Trait Loci Repressor Proteins - genetics Repressor Proteins - metabolism rice Time Factors tropics Zea Zea mays - genetics |
title | ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZmCCT%20and%20the%20genetic%20basis%20of%20day-length%20adaptation%20underlying%20the%20postdomestication%20spread%20of%20maize&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hung,%20Hsiao-Yi&rft.date=2012-07-10&rft.volume=109&rft.issue=28&rft.spage=E1913&rft.epage=E1921&rft.pages=E1913-E1921&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1203189109&rft_dat=%3Cproquest_fao_a%3E1024643902%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024542494&rft_id=info:pmid/22711828&rfr_iscdi=true |