Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process

The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (43), p.17690-17695
Hauptverfasser: Freire-de-Lima, Leonardo, Gelfenbeyn, Kirill, Ding, Yao, Mandel, Ulla, Clausen, Henrik, Handa, Kazuko, Hakomori, Sen-itiroh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17695
container_issue 43
container_start_page 17690
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Freire-de-Lima, Leonardo
Gelfenbeyn, Kirill
Ding, Yao
Mandel, Ulla
Clausen, Henrik
Handa, Kazuko
Hakomori, Sen-itiroh
description The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.
doi_str_mv 10.1073/pnas.1115191108
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201400180754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352579</jstor_id><sourcerecordid>41352579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEotvCmRMQcYFL2hl_xPYFCVUFKlXqAXq2nMTZ9SqxFzu70v73OOyyBQ5Ilnx4v3maN68oXiFcIgh6tfEmXSIiR4UI8kmxQFBY1UzB02IBQEQlGWFnxXlKawBQXMLz4owQgJqCXBTrW78Lw86O1k9l6Mv7ajns25D2g5lc8GVne-edX5bBt6G3kxnK3jUxeNtOzpf52Y2bVnZwZqhGm6xvV_sxU1M0PrlfHpsYWpvSi-JZb4ZkXx7_i-Lh883366_V3f2X2-tPd1XLpZqqxjSMdKare2C1lQ3hnWhM3TeAqETLbddZoTpCUMiG8RwIG-iYRcqE4ayhF8XHg-9m24y2a3OyaAa9iW40ca-DcfpvxbuVXoadpgSoqEk2eH80iOHH1qZJjy61dhiMt2GbtAIQgqGayQ__JbGuKad5M5nRd_-g67CNPh9i9pPAgdYZujpAbQwpRduftkbQc-F6Llw_Fp4n3vwZ9sT_bjgD5RGYJx_tpGZUo6gVZOT1AVmnKcQTw5BywoXK-tuD3pugzTK6pB--EUAGgBIEZ_QnPO3G5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900805036</pqid></control><display><type>article</type><title>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Freire-de-Lima, Leonardo ; Gelfenbeyn, Kirill ; Ding, Yao ; Mandel, Ulla ; Clausen, Henrik ; Handa, Kazuko ; Hakomori, Sen-itiroh</creator><creatorcontrib>Freire-de-Lima, Leonardo ; Gelfenbeyn, Kirill ; Ding, Yao ; Mandel, Ulla ; Clausen, Henrik ; Handa, Kazuko ; Hakomori, Sen-itiroh</creatorcontrib><description>The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1115191108</identifier><identifier>PMID: 22006308</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adults ; Animals ; Antibodies, Monoclonal ; Biological Sciences ; Blotting, Western ; Cadherins ; Cancer ; Cell Line ; Cell lines ; Cell motility ; cell movement ; Cells ; DNA Primers - genetics ; Epithelial Cells ; Epithelial-Mesenchymal Transition - physiology ; Epitopes ; fibronectins ; Fibronectins - metabolism ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Neoplastic - physiology ; Gene Knockdown Techniques ; glycosphingolipids ; Glycosylation ; Hepatocytes ; Humans ; Mesenchymal stem cells ; Messenger RNA ; metastasis ; Mice ; N-Acetylgalactosaminyltransferases - genetics ; Polypeptide N-acetylgalactosaminyltransferase ; Prostate ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; RNA, Small Interfering - genetics ; Small interfering RNA ; threonine ; transforming growth factor beta ; Transforming Growth Factor beta - pharmacology ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (43), p.17690-17695</ispartof><rights>Copyright National Academy of Sciences Oct 25, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</citedby><cites>FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/43.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22006308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freire-de-Lima, Leonardo</creatorcontrib><creatorcontrib>Gelfenbeyn, Kirill</creatorcontrib><creatorcontrib>Ding, Yao</creatorcontrib><creatorcontrib>Mandel, Ulla</creatorcontrib><creatorcontrib>Clausen, Henrik</creatorcontrib><creatorcontrib>Handa, Kazuko</creatorcontrib><creatorcontrib>Hakomori, Sen-itiroh</creatorcontrib><title>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.</description><subject>adults</subject><subject>Animals</subject><subject>Antibodies, Monoclonal</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Cadherins</subject><subject>Cancer</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell motility</subject><subject>cell movement</subject><subject>Cells</subject><subject>DNA Primers - genetics</subject><subject>Epithelial Cells</subject><subject>Epithelial-Mesenchymal Transition - physiology</subject><subject>Epitopes</subject><subject>fibronectins</subject><subject>Fibronectins - metabolism</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>glycosphingolipids</subject><subject>Glycosylation</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Mesenchymal stem cells</subject><subject>Messenger RNA</subject><subject>metastasis</subject><subject>Mice</subject><subject>N-Acetylgalactosaminyltransferases - genetics</subject><subject>Polypeptide N-acetylgalactosaminyltransferase</subject><subject>Prostate</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Small interfering RNA</subject><subject>threonine</subject><subject>transforming growth factor beta</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxSMEotvCmRMQcYFL2hl_xPYFCVUFKlXqAXq2nMTZ9SqxFzu70v73OOyyBQ5Ilnx4v3maN68oXiFcIgh6tfEmXSIiR4UI8kmxQFBY1UzB02IBQEQlGWFnxXlKawBQXMLz4owQgJqCXBTrW78Lw86O1k9l6Mv7ajns25D2g5lc8GVne-edX5bBt6G3kxnK3jUxeNtOzpf52Y2bVnZwZqhGm6xvV_sxU1M0PrlfHpsYWpvSi-JZb4ZkXx7_i-Lh883366_V3f2X2-tPd1XLpZqqxjSMdKare2C1lQ3hnWhM3TeAqETLbddZoTpCUMiG8RwIG-iYRcqE4ayhF8XHg-9m24y2a3OyaAa9iW40ca-DcfpvxbuVXoadpgSoqEk2eH80iOHH1qZJjy61dhiMt2GbtAIQgqGayQ__JbGuKad5M5nRd_-g67CNPh9i9pPAgdYZujpAbQwpRduftkbQc-F6Llw_Fp4n3vwZ9sT_bjgD5RGYJx_tpGZUo6gVZOT1AVmnKcQTw5BywoXK-tuD3pugzTK6pB--EUAGgBIEZ_QnPO3G5w</recordid><startdate>20111025</startdate><enddate>20111025</enddate><creator>Freire-de-Lima, Leonardo</creator><creator>Gelfenbeyn, Kirill</creator><creator>Ding, Yao</creator><creator>Mandel, Ulla</creator><creator>Clausen, Henrik</creator><creator>Handa, Kazuko</creator><creator>Hakomori, Sen-itiroh</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111025</creationdate><title>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</title><author>Freire-de-Lima, Leonardo ; Gelfenbeyn, Kirill ; Ding, Yao ; Mandel, Ulla ; Clausen, Henrik ; Handa, Kazuko ; Hakomori, Sen-itiroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adults</topic><topic>Animals</topic><topic>Antibodies, Monoclonal</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Cadherins</topic><topic>Cancer</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell motility</topic><topic>cell movement</topic><topic>Cells</topic><topic>DNA Primers - genetics</topic><topic>Epithelial Cells</topic><topic>Epithelial-Mesenchymal Transition - physiology</topic><topic>Epitopes</topic><topic>fibronectins</topic><topic>Fibronectins - metabolism</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>glycosphingolipids</topic><topic>Glycosylation</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Mesenchymal stem cells</topic><topic>Messenger RNA</topic><topic>metastasis</topic><topic>Mice</topic><topic>N-Acetylgalactosaminyltransferases - genetics</topic><topic>Polypeptide N-acetylgalactosaminyltransferase</topic><topic>Prostate</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Small interfering RNA</topic><topic>threonine</topic><topic>transforming growth factor beta</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freire-de-Lima, Leonardo</creatorcontrib><creatorcontrib>Gelfenbeyn, Kirill</creatorcontrib><creatorcontrib>Ding, Yao</creatorcontrib><creatorcontrib>Mandel, Ulla</creatorcontrib><creatorcontrib>Clausen, Henrik</creatorcontrib><creatorcontrib>Handa, Kazuko</creatorcontrib><creatorcontrib>Hakomori, Sen-itiroh</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freire-de-Lima, Leonardo</au><au>Gelfenbeyn, Kirill</au><au>Ding, Yao</au><au>Mandel, Ulla</au><au>Clausen, Henrik</au><au>Handa, Kazuko</au><au>Hakomori, Sen-itiroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-25</date><risdate>2011</risdate><volume>108</volume><issue>43</issue><spage>17690</spage><epage>17695</epage><pages>17690-17695</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22006308</pmid><doi>10.1073/pnas.1115191108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (43), p.17690-17695
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201400180754
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adults
Animals
Antibodies, Monoclonal
Biological Sciences
Blotting, Western
Cadherins
Cancer
Cell Line
Cell lines
Cell motility
cell movement
Cells
DNA Primers - genetics
Epithelial Cells
Epithelial-Mesenchymal Transition - physiology
Epitopes
fibronectins
Fibronectins - metabolism
Gene expression
gene expression regulation
Gene Expression Regulation, Neoplastic - physiology
Gene Knockdown Techniques
glycosphingolipids
Glycosylation
Hepatocytes
Humans
Mesenchymal stem cells
Messenger RNA
metastasis
Mice
N-Acetylgalactosaminyltransferases - genetics
Polypeptide N-acetylgalactosaminyltransferase
Prostate
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - metabolism
RNA, Small Interfering - genetics
Small interfering RNA
threonine
transforming growth factor beta
Transforming Growth Factor beta - pharmacology
Tumors
title Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20O-glycosylation%20defining%20oncofetal%20fibronectin%20in%20epithelial-mesenchymal%20transition%20process&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Freire-de-Lima,%20Leonardo&rft.date=2011-10-25&rft.volume=108&rft.issue=43&rft.spage=17690&rft.epage=17695&rft.pages=17690-17695&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1115191108&rft_dat=%3Cjstor_fao_a%3E41352579%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900805036&rft_id=info:pmid/22006308&rft_jstor_id=41352579&rfr_iscdi=true