Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process
The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulat...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (43), p.17690-17695 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17695 |
---|---|
container_issue | 43 |
container_start_page | 17690 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Freire-de-Lima, Leonardo Gelfenbeyn, Kirill Ding, Yao Mandel, Ulla Clausen, Henrik Handa, Kazuko Hakomori, Sen-itiroh |
description | The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process. |
doi_str_mv | 10.1073/pnas.1115191108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201400180754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352579</jstor_id><sourcerecordid>41352579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEotvCmRMQcYFL2hl_xPYFCVUFKlXqAXq2nMTZ9SqxFzu70v73OOyyBQ5Ilnx4v3maN68oXiFcIgh6tfEmXSIiR4UI8kmxQFBY1UzB02IBQEQlGWFnxXlKawBQXMLz4owQgJqCXBTrW78Lw86O1k9l6Mv7ajns25D2g5lc8GVne-edX5bBt6G3kxnK3jUxeNtOzpf52Y2bVnZwZqhGm6xvV_sxU1M0PrlfHpsYWpvSi-JZb4ZkXx7_i-Lh883366_V3f2X2-tPd1XLpZqqxjSMdKare2C1lQ3hnWhM3TeAqETLbddZoTpCUMiG8RwIG-iYRcqE4ayhF8XHg-9m24y2a3OyaAa9iW40ca-DcfpvxbuVXoadpgSoqEk2eH80iOHH1qZJjy61dhiMt2GbtAIQgqGayQ__JbGuKad5M5nRd_-g67CNPh9i9pPAgdYZujpAbQwpRduftkbQc-F6Llw_Fp4n3vwZ9sT_bjgD5RGYJx_tpGZUo6gVZOT1AVmnKcQTw5BywoXK-tuD3pugzTK6pB--EUAGgBIEZ_QnPO3G5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900805036</pqid></control><display><type>article</type><title>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Freire-de-Lima, Leonardo ; Gelfenbeyn, Kirill ; Ding, Yao ; Mandel, Ulla ; Clausen, Henrik ; Handa, Kazuko ; Hakomori, Sen-itiroh</creator><creatorcontrib>Freire-de-Lima, Leonardo ; Gelfenbeyn, Kirill ; Ding, Yao ; Mandel, Ulla ; Clausen, Henrik ; Handa, Kazuko ; Hakomori, Sen-itiroh</creatorcontrib><description>The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1115191108</identifier><identifier>PMID: 22006308</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adults ; Animals ; Antibodies, Monoclonal ; Biological Sciences ; Blotting, Western ; Cadherins ; Cancer ; Cell Line ; Cell lines ; Cell motility ; cell movement ; Cells ; DNA Primers - genetics ; Epithelial Cells ; Epithelial-Mesenchymal Transition - physiology ; Epitopes ; fibronectins ; Fibronectins - metabolism ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Neoplastic - physiology ; Gene Knockdown Techniques ; glycosphingolipids ; Glycosylation ; Hepatocytes ; Humans ; Mesenchymal stem cells ; Messenger RNA ; metastasis ; Mice ; N-Acetylgalactosaminyltransferases - genetics ; Polypeptide N-acetylgalactosaminyltransferase ; Prostate ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; RNA, Small Interfering - genetics ; Small interfering RNA ; threonine ; transforming growth factor beta ; Transforming Growth Factor beta - pharmacology ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (43), p.17690-17695</ispartof><rights>Copyright National Academy of Sciences Oct 25, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</citedby><cites>FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/43.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22006308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freire-de-Lima, Leonardo</creatorcontrib><creatorcontrib>Gelfenbeyn, Kirill</creatorcontrib><creatorcontrib>Ding, Yao</creatorcontrib><creatorcontrib>Mandel, Ulla</creatorcontrib><creatorcontrib>Clausen, Henrik</creatorcontrib><creatorcontrib>Handa, Kazuko</creatorcontrib><creatorcontrib>Hakomori, Sen-itiroh</creatorcontrib><title>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.</description><subject>adults</subject><subject>Animals</subject><subject>Antibodies, Monoclonal</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Cadherins</subject><subject>Cancer</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell motility</subject><subject>cell movement</subject><subject>Cells</subject><subject>DNA Primers - genetics</subject><subject>Epithelial Cells</subject><subject>Epithelial-Mesenchymal Transition - physiology</subject><subject>Epitopes</subject><subject>fibronectins</subject><subject>Fibronectins - metabolism</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>glycosphingolipids</subject><subject>Glycosylation</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Mesenchymal stem cells</subject><subject>Messenger RNA</subject><subject>metastasis</subject><subject>Mice</subject><subject>N-Acetylgalactosaminyltransferases - genetics</subject><subject>Polypeptide N-acetylgalactosaminyltransferase</subject><subject>Prostate</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Small interfering RNA</subject><subject>threonine</subject><subject>transforming growth factor beta</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxSMEotvCmRMQcYFL2hl_xPYFCVUFKlXqAXq2nMTZ9SqxFzu70v73OOyyBQ5Ilnx4v3maN68oXiFcIgh6tfEmXSIiR4UI8kmxQFBY1UzB02IBQEQlGWFnxXlKawBQXMLz4owQgJqCXBTrW78Lw86O1k9l6Mv7ajns25D2g5lc8GVne-edX5bBt6G3kxnK3jUxeNtOzpf52Y2bVnZwZqhGm6xvV_sxU1M0PrlfHpsYWpvSi-JZb4ZkXx7_i-Lh883366_V3f2X2-tPd1XLpZqqxjSMdKare2C1lQ3hnWhM3TeAqETLbddZoTpCUMiG8RwIG-iYRcqE4ayhF8XHg-9m24y2a3OyaAa9iW40ca-DcfpvxbuVXoadpgSoqEk2eH80iOHH1qZJjy61dhiMt2GbtAIQgqGayQ__JbGuKad5M5nRd_-g67CNPh9i9pPAgdYZujpAbQwpRduftkbQc-F6Llw_Fp4n3vwZ9sT_bjgD5RGYJx_tpGZUo6gVZOT1AVmnKcQTw5BywoXK-tuD3pugzTK6pB--EUAGgBIEZ_QnPO3G5w</recordid><startdate>20111025</startdate><enddate>20111025</enddate><creator>Freire-de-Lima, Leonardo</creator><creator>Gelfenbeyn, Kirill</creator><creator>Ding, Yao</creator><creator>Mandel, Ulla</creator><creator>Clausen, Henrik</creator><creator>Handa, Kazuko</creator><creator>Hakomori, Sen-itiroh</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111025</creationdate><title>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</title><author>Freire-de-Lima, Leonardo ; Gelfenbeyn, Kirill ; Ding, Yao ; Mandel, Ulla ; Clausen, Henrik ; Handa, Kazuko ; Hakomori, Sen-itiroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-bab42dad6f046e8b25d7ba6fb01197c5edde79d22178b455801b0d4e1347a54b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adults</topic><topic>Animals</topic><topic>Antibodies, Monoclonal</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Cadherins</topic><topic>Cancer</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell motility</topic><topic>cell movement</topic><topic>Cells</topic><topic>DNA Primers - genetics</topic><topic>Epithelial Cells</topic><topic>Epithelial-Mesenchymal Transition - physiology</topic><topic>Epitopes</topic><topic>fibronectins</topic><topic>Fibronectins - metabolism</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>glycosphingolipids</topic><topic>Glycosylation</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Mesenchymal stem cells</topic><topic>Messenger RNA</topic><topic>metastasis</topic><topic>Mice</topic><topic>N-Acetylgalactosaminyltransferases - genetics</topic><topic>Polypeptide N-acetylgalactosaminyltransferase</topic><topic>Prostate</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Small interfering RNA</topic><topic>threonine</topic><topic>transforming growth factor beta</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freire-de-Lima, Leonardo</creatorcontrib><creatorcontrib>Gelfenbeyn, Kirill</creatorcontrib><creatorcontrib>Ding, Yao</creatorcontrib><creatorcontrib>Mandel, Ulla</creatorcontrib><creatorcontrib>Clausen, Henrik</creatorcontrib><creatorcontrib>Handa, Kazuko</creatorcontrib><creatorcontrib>Hakomori, Sen-itiroh</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freire-de-Lima, Leonardo</au><au>Gelfenbeyn, Kirill</au><au>Ding, Yao</au><au>Mandel, Ulla</au><au>Clausen, Henrik</au><au>Handa, Kazuko</au><au>Hakomori, Sen-itiroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-25</date><risdate>2011</risdate><volume>108</volume><issue>43</issue><spage>17690</spage><epage>17695</epage><pages>17690-17695</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The process termed "epithelial–mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22006308</pmid><doi>10.1073/pnas.1115191108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (43), p.17690-17695 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201400180754 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | adults Animals Antibodies, Monoclonal Biological Sciences Blotting, Western Cadherins Cancer Cell Line Cell lines Cell motility cell movement Cells DNA Primers - genetics Epithelial Cells Epithelial-Mesenchymal Transition - physiology Epitopes fibronectins Fibronectins - metabolism Gene expression gene expression regulation Gene Expression Regulation, Neoplastic - physiology Gene Knockdown Techniques glycosphingolipids Glycosylation Hepatocytes Humans Mesenchymal stem cells Messenger RNA metastasis Mice N-Acetylgalactosaminyltransferases - genetics Polypeptide N-acetylgalactosaminyltransferase Prostate Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - metabolism RNA, Small Interfering - genetics Small interfering RNA threonine transforming growth factor beta Transforming Growth Factor beta - pharmacology Tumors |
title | Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20O-glycosylation%20defining%20oncofetal%20fibronectin%20in%20epithelial-mesenchymal%20transition%20process&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Freire-de-Lima,%20Leonardo&rft.date=2011-10-25&rft.volume=108&rft.issue=43&rft.spage=17690&rft.epage=17695&rft.pages=17690-17695&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1115191108&rft_dat=%3Cjstor_fao_a%3E41352579%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900805036&rft_id=info:pmid/22006308&rft_jstor_id=41352579&rfr_iscdi=true |