Separation of telomerase functions by reverse genetics
The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relati...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-12, Vol.108 (50), p.E1363-E1371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1371 |
---|---|
container_issue | 50 |
container_start_page | E1363 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Mukherjee, Shibani Firpo, Eduardo J Wang, Yang Roberts, James M |
description | The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment. Here, we show that this phenotype is caused by a combination of increased cell division and decreased apoptosis. In addition, we use a panel of hTERT mutants to demonstrate that this enhanced cell proliferation can be uncoupled not only from telomere elongation, but also from other telomerase activities, including cellular lifespan extension and regulation of DNA damage responses. We also find that the proliferative function of hTERT, which requires hTERT catalytic activity, is not caused by increased Wnt signaling, but is accompanied by alterations in key cell cycle regulators and is linked to an hTERT-catalyzed decrease in the levels of the RNA component of mitochondrial RNA processing endoribonuclease. Thus, enhanced cell proliferation is an independent function of hTERT that could provide a new target for the development of anti-telomerase cancer therapeutic agents. |
doi_str_mv | 10.1073/pnas.1112414108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201400069387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926882437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-db6386729ca41bd603d8cab2cba58741ca47c229d4fb93f5f07aefbda8826a623</originalsourceid><addsrcrecordid>eNpdkUtP3DAUha2qFUyBdXc06qarwPUjfmwqIUQfElIXlLV149hDUCae2slI_Ps6mgHariwdf-f4Xh9CPlC4oKD45XbEfEEpZYIKCvoNWVEwtJbCwFuyAmCq1oKJY_I-50cAMI2GI3LMqBFGAKyIvPNbTDj1caxiqCY_xI1PmH0V5tEtcq7apyr5nU9FXPvRT73Lp-RdwCH7s8N5Qu6_3vy6_l7f_vz24_rqtnaNlFPdtZJrqZhxKGjbSeCddtgy12KjlaBFVo4x04nQGh6aAAp9aDvUmkmUjJ-QL_vc7dxufOf8OCUc7Db1G0xPNmJv_70Z-we7jjvLWQPUqBLw-RCQ4u_Z58lu-uz8MODo45ytYbK8JfhCfvqPfIxzGst21pRPVWC4KdDlHnIp5px8eBmFgl0asUsj9rWR4jj_e4MX_rmCAlQHYHG-xmnbgL2hXPKCfNwjAaPFdeqzvb9jQIsdpOFa8T-RKZu7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910970939</pqid></control><display><type>article</type><title>Separation of telomerase functions by reverse genetics</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mukherjee, Shibani ; Firpo, Eduardo J ; Wang, Yang ; Roberts, James M</creator><creatorcontrib>Mukherjee, Shibani ; Firpo, Eduardo J ; Wang, Yang ; Roberts, James M</creatorcontrib><description>The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment. Here, we show that this phenotype is caused by a combination of increased cell division and decreased apoptosis. In addition, we use a panel of hTERT mutants to demonstrate that this enhanced cell proliferation can be uncoupled not only from telomere elongation, but also from other telomerase activities, including cellular lifespan extension and regulation of DNA damage responses. We also find that the proliferative function of hTERT, which requires hTERT catalytic activity, is not caused by increased Wnt signaling, but is accompanied by alterations in key cell cycle regulators and is linked to an hTERT-catalyzed decrease in the levels of the RNA component of mitochondrial RNA processing endoribonuclease. Thus, enhanced cell proliferation is an independent function of hTERT that could provide a new target for the development of anti-telomerase cancer therapeutic agents.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1112414108</identifier><identifier>PMID: 21949400</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Apoptosis ; Biocatalysis - drug effects ; Biological Sciences ; Breast - cytology ; Cancer ; catalytic activity ; Cell cycle ; Cell division ; Cell Division - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cellular Senescence - drug effects ; Chromosomal Instability - drug effects ; DNA ; DNA Damage ; Endoribonucleases - metabolism ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - enzymology ; Female ; Genetics ; Humans ; Life span ; longevity ; Mammary gland ; Mice ; Mitochondria ; Mitogens ; Mitogens - pharmacology ; mutants ; phenotype ; PNAS Plus ; Reverse Genetics ; RNA ; RNA processing ; Signal transduction ; telomerase ; Telomerase - genetics ; Telomerase - metabolism ; telomerase reverse transcriptase ; Telomere - metabolism ; Telomeres ; Wnt protein ; Wnt Signaling Pathway - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-12, Vol.108 (50), p.E1363-E1371</ispartof><rights>Copyright National Academy of Sciences Dec 13, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-db6386729ca41bd603d8cab2cba58741ca47c229d4fb93f5f07aefbda8826a623</citedby><cites>FETCH-LOGICAL-c566t-db6386729ca41bd603d8cab2cba58741ca47c229d4fb93f5f07aefbda8826a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250197/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250197/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Shibani</creatorcontrib><creatorcontrib>Firpo, Eduardo J</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Roberts, James M</creatorcontrib><title>Separation of telomerase functions by reverse genetics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment. Here, we show that this phenotype is caused by a combination of increased cell division and decreased apoptosis. In addition, we use a panel of hTERT mutants to demonstrate that this enhanced cell proliferation can be uncoupled not only from telomere elongation, but also from other telomerase activities, including cellular lifespan extension and regulation of DNA damage responses. We also find that the proliferative function of hTERT, which requires hTERT catalytic activity, is not caused by increased Wnt signaling, but is accompanied by alterations in key cell cycle regulators and is linked to an hTERT-catalyzed decrease in the levels of the RNA component of mitochondrial RNA processing endoribonuclease. Thus, enhanced cell proliferation is an independent function of hTERT that could provide a new target for the development of anti-telomerase cancer therapeutic agents.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biocatalysis - drug effects</subject><subject>Biological Sciences</subject><subject>Breast - cytology</subject><subject>Cancer</subject><subject>catalytic activity</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell Division - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cellular Senescence - drug effects</subject><subject>Chromosomal Instability - drug effects</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Endoribonucleases - metabolism</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - enzymology</subject><subject>Female</subject><subject>Genetics</subject><subject>Humans</subject><subject>Life span</subject><subject>longevity</subject><subject>Mammary gland</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitogens</subject><subject>Mitogens - pharmacology</subject><subject>mutants</subject><subject>phenotype</subject><subject>PNAS Plus</subject><subject>Reverse Genetics</subject><subject>RNA</subject><subject>RNA processing</subject><subject>Signal transduction</subject><subject>telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>telomerase reverse transcriptase</subject><subject>Telomere - metabolism</subject><subject>Telomeres</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtP3DAUha2qFUyBdXc06qarwPUjfmwqIUQfElIXlLV149hDUCae2slI_Ps6mgHariwdf-f4Xh9CPlC4oKD45XbEfEEpZYIKCvoNWVEwtJbCwFuyAmCq1oKJY_I-50cAMI2GI3LMqBFGAKyIvPNbTDj1caxiqCY_xI1PmH0V5tEtcq7apyr5nU9FXPvRT73Lp-RdwCH7s8N5Qu6_3vy6_l7f_vz24_rqtnaNlFPdtZJrqZhxKGjbSeCddtgy12KjlaBFVo4x04nQGh6aAAp9aDvUmkmUjJ-QL_vc7dxufOf8OCUc7Db1G0xPNmJv_70Z-we7jjvLWQPUqBLw-RCQ4u_Z58lu-uz8MODo45ytYbK8JfhCfvqPfIxzGst21pRPVWC4KdDlHnIp5px8eBmFgl0asUsj9rWR4jj_e4MX_rmCAlQHYHG-xmnbgL2hXPKCfNwjAaPFdeqzvb9jQIsdpOFa8T-RKZu7</recordid><startdate>20111213</startdate><enddate>20111213</enddate><creator>Mukherjee, Shibani</creator><creator>Firpo, Eduardo J</creator><creator>Wang, Yang</creator><creator>Roberts, James M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20111213</creationdate><title>Separation of telomerase functions by reverse genetics</title><author>Mukherjee, Shibani ; Firpo, Eduardo J ; Wang, Yang ; Roberts, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-db6386729ca41bd603d8cab2cba58741ca47c229d4fb93f5f07aefbda8826a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biocatalysis - drug effects</topic><topic>Biological Sciences</topic><topic>Breast - cytology</topic><topic>Cancer</topic><topic>catalytic activity</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell Division - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cellular Senescence - drug effects</topic><topic>Chromosomal Instability - drug effects</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Endoribonucleases - metabolism</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - enzymology</topic><topic>Female</topic><topic>Genetics</topic><topic>Humans</topic><topic>Life span</topic><topic>longevity</topic><topic>Mammary gland</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitogens</topic><topic>Mitogens - pharmacology</topic><topic>mutants</topic><topic>phenotype</topic><topic>PNAS Plus</topic><topic>Reverse Genetics</topic><topic>RNA</topic><topic>RNA processing</topic><topic>Signal transduction</topic><topic>telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>telomerase reverse transcriptase</topic><topic>Telomere - metabolism</topic><topic>Telomeres</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Shibani</creatorcontrib><creatorcontrib>Firpo, Eduardo J</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Roberts, James M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Shibani</au><au>Firpo, Eduardo J</au><au>Wang, Yang</au><au>Roberts, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of telomerase functions by reverse genetics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-12-13</date><risdate>2011</risdate><volume>108</volume><issue>50</issue><spage>E1363</spage><epage>E1371</epage><pages>E1363-E1371</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment. Here, we show that this phenotype is caused by a combination of increased cell division and decreased apoptosis. In addition, we use a panel of hTERT mutants to demonstrate that this enhanced cell proliferation can be uncoupled not only from telomere elongation, but also from other telomerase activities, including cellular lifespan extension and regulation of DNA damage responses. We also find that the proliferative function of hTERT, which requires hTERT catalytic activity, is not caused by increased Wnt signaling, but is accompanied by alterations in key cell cycle regulators and is linked to an hTERT-catalyzed decrease in the levels of the RNA component of mitochondrial RNA processing endoribonuclease. Thus, enhanced cell proliferation is an independent function of hTERT that could provide a new target for the development of anti-telomerase cancer therapeutic agents.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21949400</pmid><doi>10.1073/pnas.1112414108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-12, Vol.108 (50), p.E1363-E1371 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201400069387 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Apoptosis Biocatalysis - drug effects Biological Sciences Breast - cytology Cancer catalytic activity Cell cycle Cell division Cell Division - drug effects Cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects Cellular Senescence - drug effects Chromosomal Instability - drug effects DNA DNA Damage Endoribonucleases - metabolism Epithelial cells Epithelial Cells - cytology Epithelial Cells - drug effects Epithelial Cells - enzymology Female Genetics Humans Life span longevity Mammary gland Mice Mitochondria Mitogens Mitogens - pharmacology mutants phenotype PNAS Plus Reverse Genetics RNA RNA processing Signal transduction telomerase Telomerase - genetics Telomerase - metabolism telomerase reverse transcriptase Telomere - metabolism Telomeres Wnt protein Wnt Signaling Pathway - drug effects |
title | Separation of telomerase functions by reverse genetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20telomerase%20functions%20by%20reverse%20genetics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mukherjee,%20Shibani&rft.date=2011-12-13&rft.volume=108&rft.issue=50&rft.spage=E1363&rft.epage=E1371&rft.pages=E1363-E1371&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1112414108&rft_dat=%3Cproquest_fao_a%3E926882437%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910970939&rft_id=info:pmid/21949400&rfr_iscdi=true |