neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo
Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (40), p.16502-16509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16509 |
---|---|
container_issue | 40 |
container_start_page | 16502 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Soler-Llavina, Gilberto J Fuccillo, Marc V Ko, Jaewon Südhof, Thomas C Malenka, Robert C |
description | Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation. |
doi_str_mv | 10.1073/pnas.1114028108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301961430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41321730</jstor_id><sourcerecordid>41321730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</originalsourceid><addsrcrecordid>eNp9ks9vFCEUxydGY7fVsyeVeNFDp-XXMHAxMY2_kiYetGfCsrBlMwMjzGzaP8H_um_c7VY9GELI433eF3h8q-oFwWcEt-x8iKacEUI4ppJg-ahaEKxILbjCj6sFxrStJaf8qDouZYMxVo3ET6sjSlTDhBKL6ld0U3Y3IaIurE1clVM07ySIQiwIdlDnJhuiq3Ow1yi7wZkRjdnE0rt-CatDQ06jA_wUDS77lHtkU9y6vHZx_C2xCvdRuY1mGINFfop2DAnOgLO3YZueVU-86Yp7vl9PqqtPH39cfKkvv33-evHhsraNVGO9WnLT-JYqC8MvpSEts54zJVvKsZKNpUIxJowxRBGBxTy9JwqLFfXMsZPq_U53mJa9W1m4VTadHnLoTb7VyQT9dyaGa71OW82IVLhtQODtXiCnn5Mro-5Dsa7roBVpKloq0VBB-Ey--y8Jf8UAo7wF9M0_6CZNOUIjZj2hlBQMoPMdZHMqJTt_uDXBevaDnv2gH_wAFa_-fOyBvzcAAGgPzJUPclJzkBQNpoC83CGbMqZ8YDhhFHqPIf96l_cmabPOoeir7xQThomCNgBxB8AD0ac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896699863</pqid></control><display><type>article</type><title>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soler-Llavina, Gilberto J ; Fuccillo, Marc V ; Ko, Jaewon ; Südhof, Thomas C ; Malenka, Robert C</creator><creatorcontrib>Soler-Llavina, Gilberto J ; Fuccillo, Marc V ; Ko, Jaewon ; Südhof, Thomas C ; Malenka, Robert C</creatorcontrib><description>Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1114028108</identifier><identifier>PMID: 21953696</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; Animals ; Biological Sciences ; Cell adhesion ; Cell adhesion & migration ; Cell Adhesion - genetics ; Cell Adhesion - physiology ; Cell adhesion molecules ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Development ; Disease transmission ; early development ; electrophysiology ; Gene Knockdown Techniques ; Genetic Vectors - genetics ; Genotypes ; Glutamic acid receptors (ionotropic) ; Hippocampus - cytology ; Hippocampus - physiology ; knockout mutants ; Lentivirus ; Ligands ; Maturation ; Membrane proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Myelin P0 protein ; N-Methyl-D-aspartic acid receptors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neural Cell Adhesion Molecules - genetics ; Neural Cell Adhesion Molecules - metabolism ; Neurons ; Neurotransmission ; Patch-Clamp Techniques ; Phenotypes ; Proteins ; Pyramidal cells ; receptors ; Rodents ; synapse ; Synapses ; Synapses - metabolism ; Synaptic transmission ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology ; Synaptogenesis ; transmembrane proteins ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16502-16509</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 4, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</citedby><cites>FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41321730$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41321730$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21953696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soler-Llavina, Gilberto J</creatorcontrib><creatorcontrib>Fuccillo, Marc V</creatorcontrib><creatorcontrib>Ko, Jaewon</creatorcontrib><creatorcontrib>Südhof, Thomas C</creatorcontrib><creatorcontrib>Malenka, Robert C</creatorcontrib><title>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.</description><subject>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Adhesion - physiology</subject><subject>Cell adhesion molecules</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Development</subject><subject>Disease transmission</subject><subject>early development</subject><subject>electrophysiology</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic Vectors - genetics</subject><subject>Genotypes</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>knockout mutants</subject><subject>Lentivirus</subject><subject>Ligands</subject><subject>Maturation</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myelin P0 protein</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Cell Adhesion Molecules - genetics</subject><subject>Neural Cell Adhesion Molecules - metabolism</subject><subject>Neurons</subject><subject>Neurotransmission</subject><subject>Patch-Clamp Techniques</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Pyramidal cells</subject><subject>receptors</subject><subject>Rodents</subject><subject>synapse</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptogenesis</subject><subject>transmembrane proteins</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks9vFCEUxydGY7fVsyeVeNFDp-XXMHAxMY2_kiYetGfCsrBlMwMjzGzaP8H_um_c7VY9GELI433eF3h8q-oFwWcEt-x8iKacEUI4ppJg-ahaEKxILbjCj6sFxrStJaf8qDouZYMxVo3ET6sjSlTDhBKL6ld0U3Y3IaIurE1clVM07ySIQiwIdlDnJhuiq3Ow1yi7wZkRjdnE0rt-CatDQ06jA_wUDS77lHtkU9y6vHZx_C2xCvdRuY1mGINFfop2DAnOgLO3YZueVU-86Yp7vl9PqqtPH39cfKkvv33-evHhsraNVGO9WnLT-JYqC8MvpSEts54zJVvKsZKNpUIxJowxRBGBxTy9JwqLFfXMsZPq_U53mJa9W1m4VTadHnLoTb7VyQT9dyaGa71OW82IVLhtQODtXiCnn5Mro-5Dsa7roBVpKloq0VBB-Ey--y8Jf8UAo7wF9M0_6CZNOUIjZj2hlBQMoPMdZHMqJTt_uDXBevaDnv2gH_wAFa_-fOyBvzcAAGgPzJUPclJzkBQNpoC83CGbMqZ8YDhhFHqPIf96l_cmabPOoeir7xQThomCNgBxB8AD0ac</recordid><startdate>20111004</startdate><enddate>20111004</enddate><creator>Soler-Llavina, Gilberto J</creator><creator>Fuccillo, Marc V</creator><creator>Ko, Jaewon</creator><creator>Südhof, Thomas C</creator><creator>Malenka, Robert C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111004</creationdate><title>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</title><author>Soler-Llavina, Gilberto J ; Fuccillo, Marc V ; Ko, Jaewon ; Südhof, Thomas C ; Malenka, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Adhesion - physiology</topic><topic>Cell adhesion molecules</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Development</topic><topic>Disease transmission</topic><topic>early development</topic><topic>electrophysiology</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic Vectors - genetics</topic><topic>Genotypes</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>knockout mutants</topic><topic>Lentivirus</topic><topic>Ligands</topic><topic>Maturation</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myelin P0 protein</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Cell Adhesion Molecules - genetics</topic><topic>Neural Cell Adhesion Molecules - metabolism</topic><topic>Neurons</topic><topic>Neurotransmission</topic><topic>Patch-Clamp Techniques</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Pyramidal cells</topic><topic>receptors</topic><topic>Rodents</topic><topic>synapse</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptogenesis</topic><topic>transmembrane proteins</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soler-Llavina, Gilberto J</creatorcontrib><creatorcontrib>Fuccillo, Marc V</creatorcontrib><creatorcontrib>Ko, Jaewon</creatorcontrib><creatorcontrib>Südhof, Thomas C</creatorcontrib><creatorcontrib>Malenka, Robert C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soler-Llavina, Gilberto J</au><au>Fuccillo, Marc V</au><au>Ko, Jaewon</au><au>Südhof, Thomas C</au><au>Malenka, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-04</date><risdate>2011</risdate><volume>108</volume><issue>40</issue><spage>16502</spage><epage>16509</epage><pages>16502-16509</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21953696</pmid><doi>10.1073/pnas.1114028108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16502-16509 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201301961430 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid Animals Biological Sciences Cell adhesion Cell adhesion & migration Cell Adhesion - genetics Cell Adhesion - physiology Cell adhesion molecules Cell Adhesion Molecules, Neuronal - genetics Cell Adhesion Molecules, Neuronal - metabolism Development Disease transmission early development electrophysiology Gene Knockdown Techniques Genetic Vectors - genetics Genotypes Glutamic acid receptors (ionotropic) Hippocampus - cytology Hippocampus - physiology knockout mutants Lentivirus Ligands Maturation Membrane proteins Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Knockout Myelin P0 protein N-Methyl-D-aspartic acid receptors Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neural Cell Adhesion Molecules - genetics Neural Cell Adhesion Molecules - metabolism Neurons Neurotransmission Patch-Clamp Techniques Phenotypes Proteins Pyramidal cells receptors Rodents synapse Synapses Synapses - metabolism Synaptic transmission Synaptic Transmission - genetics Synaptic Transmission - physiology Synaptogenesis transmembrane proteins Viruses |
title | neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=neurexin%20ligands,%20neuroligins%20and%20leucine-rich%20repeat%20transmembrane%20proteins,%20perform%20convergent%20and%20divergent%20synaptic%20functions%20in%20vivo&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soler-Llavina,%20Gilberto%20J&rft.date=2011-10-04&rft.volume=108&rft.issue=40&rft.spage=16502&rft.epage=16509&rft.pages=16502-16509&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1114028108&rft_dat=%3Cjstor_fao_a%3E41321730%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896699863&rft_id=info:pmid/21953696&rft_jstor_id=41321730&rfr_iscdi=true |