neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo

Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (40), p.16502-16509
Hauptverfasser: Soler-Llavina, Gilberto J, Fuccillo, Marc V, Ko, Jaewon, Südhof, Thomas C, Malenka, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16509
container_issue 40
container_start_page 16502
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Soler-Llavina, Gilberto J
Fuccillo, Marc V
Ko, Jaewon
Südhof, Thomas C
Malenka, Robert C
description Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.
doi_str_mv 10.1073/pnas.1114028108
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301961430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41321730</jstor_id><sourcerecordid>41321730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</originalsourceid><addsrcrecordid>eNp9ks9vFCEUxydGY7fVsyeVeNFDp-XXMHAxMY2_kiYetGfCsrBlMwMjzGzaP8H_um_c7VY9GELI433eF3h8q-oFwWcEt-x8iKacEUI4ppJg-ahaEKxILbjCj6sFxrStJaf8qDouZYMxVo3ET6sjSlTDhBKL6ld0U3Y3IaIurE1clVM07ySIQiwIdlDnJhuiq3Ow1yi7wZkRjdnE0rt-CatDQ06jA_wUDS77lHtkU9y6vHZx_C2xCvdRuY1mGINFfop2DAnOgLO3YZueVU-86Yp7vl9PqqtPH39cfKkvv33-evHhsraNVGO9WnLT-JYqC8MvpSEts54zJVvKsZKNpUIxJowxRBGBxTy9JwqLFfXMsZPq_U53mJa9W1m4VTadHnLoTb7VyQT9dyaGa71OW82IVLhtQODtXiCnn5Mro-5Dsa7roBVpKloq0VBB-Ey--y8Jf8UAo7wF9M0_6CZNOUIjZj2hlBQMoPMdZHMqJTt_uDXBevaDnv2gH_wAFa_-fOyBvzcAAGgPzJUPclJzkBQNpoC83CGbMqZ8YDhhFHqPIf96l_cmabPOoeir7xQThomCNgBxB8AD0ac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896699863</pqid></control><display><type>article</type><title>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soler-Llavina, Gilberto J ; Fuccillo, Marc V ; Ko, Jaewon ; Südhof, Thomas C ; Malenka, Robert C</creator><creatorcontrib>Soler-Llavina, Gilberto J ; Fuccillo, Marc V ; Ko, Jaewon ; Südhof, Thomas C ; Malenka, Robert C</creatorcontrib><description>Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1114028108</identifier><identifier>PMID: 21953696</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; Animals ; Biological Sciences ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Adhesion - genetics ; Cell Adhesion - physiology ; Cell adhesion molecules ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Development ; Disease transmission ; early development ; electrophysiology ; Gene Knockdown Techniques ; Genetic Vectors - genetics ; Genotypes ; Glutamic acid receptors (ionotropic) ; Hippocampus - cytology ; Hippocampus - physiology ; knockout mutants ; Lentivirus ; Ligands ; Maturation ; Membrane proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Myelin P0 protein ; N-Methyl-D-aspartic acid receptors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neural Cell Adhesion Molecules - genetics ; Neural Cell Adhesion Molecules - metabolism ; Neurons ; Neurotransmission ; Patch-Clamp Techniques ; Phenotypes ; Proteins ; Pyramidal cells ; receptors ; Rodents ; synapse ; Synapses ; Synapses - metabolism ; Synaptic transmission ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology ; Synaptogenesis ; transmembrane proteins ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16502-16509</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 4, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</citedby><cites>FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41321730$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41321730$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21953696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soler-Llavina, Gilberto J</creatorcontrib><creatorcontrib>Fuccillo, Marc V</creatorcontrib><creatorcontrib>Ko, Jaewon</creatorcontrib><creatorcontrib>Südhof, Thomas C</creatorcontrib><creatorcontrib>Malenka, Robert C</creatorcontrib><title>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.</description><subject>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Adhesion - physiology</subject><subject>Cell adhesion molecules</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Development</subject><subject>Disease transmission</subject><subject>early development</subject><subject>electrophysiology</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic Vectors - genetics</subject><subject>Genotypes</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>knockout mutants</subject><subject>Lentivirus</subject><subject>Ligands</subject><subject>Maturation</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myelin P0 protein</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Cell Adhesion Molecules - genetics</subject><subject>Neural Cell Adhesion Molecules - metabolism</subject><subject>Neurons</subject><subject>Neurotransmission</subject><subject>Patch-Clamp Techniques</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Pyramidal cells</subject><subject>receptors</subject><subject>Rodents</subject><subject>synapse</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptogenesis</subject><subject>transmembrane proteins</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks9vFCEUxydGY7fVsyeVeNFDp-XXMHAxMY2_kiYetGfCsrBlMwMjzGzaP8H_um_c7VY9GELI433eF3h8q-oFwWcEt-x8iKacEUI4ppJg-ahaEKxILbjCj6sFxrStJaf8qDouZYMxVo3ET6sjSlTDhBKL6ld0U3Y3IaIurE1clVM07ySIQiwIdlDnJhuiq3Ow1yi7wZkRjdnE0rt-CatDQ06jA_wUDS77lHtkU9y6vHZx_C2xCvdRuY1mGINFfop2DAnOgLO3YZueVU-86Yp7vl9PqqtPH39cfKkvv33-evHhsraNVGO9WnLT-JYqC8MvpSEts54zJVvKsZKNpUIxJowxRBGBxTy9JwqLFfXMsZPq_U53mJa9W1m4VTadHnLoTb7VyQT9dyaGa71OW82IVLhtQODtXiCnn5Mro-5Dsa7roBVpKloq0VBB-Ey--y8Jf8UAo7wF9M0_6CZNOUIjZj2hlBQMoPMdZHMqJTt_uDXBevaDnv2gH_wAFa_-fOyBvzcAAGgPzJUPclJzkBQNpoC83CGbMqZ8YDhhFHqPIf96l_cmabPOoeir7xQThomCNgBxB8AD0ac</recordid><startdate>20111004</startdate><enddate>20111004</enddate><creator>Soler-Llavina, Gilberto J</creator><creator>Fuccillo, Marc V</creator><creator>Ko, Jaewon</creator><creator>Südhof, Thomas C</creator><creator>Malenka, Robert C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111004</creationdate><title>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</title><author>Soler-Llavina, Gilberto J ; Fuccillo, Marc V ; Ko, Jaewon ; Südhof, Thomas C ; Malenka, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-db4a5f729c9c9fb8a173cf43987240985c269336aaa1916061606ff1906d2f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Adhesion - physiology</topic><topic>Cell adhesion molecules</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Development</topic><topic>Disease transmission</topic><topic>early development</topic><topic>electrophysiology</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic Vectors - genetics</topic><topic>Genotypes</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>knockout mutants</topic><topic>Lentivirus</topic><topic>Ligands</topic><topic>Maturation</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myelin P0 protein</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Cell Adhesion Molecules - genetics</topic><topic>Neural Cell Adhesion Molecules - metabolism</topic><topic>Neurons</topic><topic>Neurotransmission</topic><topic>Patch-Clamp Techniques</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Pyramidal cells</topic><topic>receptors</topic><topic>Rodents</topic><topic>synapse</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptogenesis</topic><topic>transmembrane proteins</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soler-Llavina, Gilberto J</creatorcontrib><creatorcontrib>Fuccillo, Marc V</creatorcontrib><creatorcontrib>Ko, Jaewon</creatorcontrib><creatorcontrib>Südhof, Thomas C</creatorcontrib><creatorcontrib>Malenka, Robert C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soler-Llavina, Gilberto J</au><au>Fuccillo, Marc V</au><au>Ko, Jaewon</au><au>Südhof, Thomas C</au><au>Malenka, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-04</date><risdate>2011</risdate><volume>108</volume><issue>40</issue><spage>16502</spage><epage>16509</epage><pages>16502-16509</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21953696</pmid><doi>10.1073/pnas.1114028108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16502-16509
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201301961430
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
Animals
Biological Sciences
Cell adhesion
Cell adhesion & migration
Cell Adhesion - genetics
Cell Adhesion - physiology
Cell adhesion molecules
Cell Adhesion Molecules, Neuronal - genetics
Cell Adhesion Molecules, Neuronal - metabolism
Development
Disease transmission
early development
electrophysiology
Gene Knockdown Techniques
Genetic Vectors - genetics
Genotypes
Glutamic acid receptors (ionotropic)
Hippocampus - cytology
Hippocampus - physiology
knockout mutants
Lentivirus
Ligands
Maturation
Membrane proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Knockout
Myelin P0 protein
N-Methyl-D-aspartic acid receptors
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neural Cell Adhesion Molecules - genetics
Neural Cell Adhesion Molecules - metabolism
Neurons
Neurotransmission
Patch-Clamp Techniques
Phenotypes
Proteins
Pyramidal cells
receptors
Rodents
synapse
Synapses
Synapses - metabolism
Synaptic transmission
Synaptic Transmission - genetics
Synaptic Transmission - physiology
Synaptogenesis
transmembrane proteins
Viruses
title neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=neurexin%20ligands,%20neuroligins%20and%20leucine-rich%20repeat%20transmembrane%20proteins,%20perform%20convergent%20and%20divergent%20synaptic%20functions%20in%20vivo&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soler-Llavina,%20Gilberto%20J&rft.date=2011-10-04&rft.volume=108&rft.issue=40&rft.spage=16502&rft.epage=16509&rft.pages=16502-16509&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1114028108&rft_dat=%3Cjstor_fao_a%3E41321730%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896699863&rft_id=info:pmid/21953696&rft_jstor_id=41321730&rfr_iscdi=true