Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer

A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the conte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-02, Vol.108 (8), p.3342-3347
Hauptverfasser: Cima, Igor, Schiess, Ralph, Wild, Peter, Kaelin, Martin, Schüffler, Peter, Lange, Vinzenz, Picotti, Paola, Ossola, Reto, Templeton, Arnoud, Schubert, Olga, Fuchs, Thomas, Leippold, Thomas, Wyler, Stephen, Zehetner, Jens, Jochum, Wolfram, Buhmann, Joachim, Cerny, Thomas, Moch, Holger, Gillessen, Silke, Aebersold, Ruedi, Krek, Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3347
container_issue 8
container_start_page 3342
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Cima, Igor
Schiess, Ralph
Wild, Peter
Kaelin, Martin
Schüffler, Peter
Lange, Vinzenz
Picotti, Paola
Ossola, Reto
Templeton, Arnoud
Schubert, Olga
Fuchs, Thomas
Leippold, Thomas
Wyler, Stephen
Zehetner, Jens
Jochum, Wolfram
Buhmann, Joachim
Cerny, Thomas
Moch, Holger
Gillessen, Silke
Aebersold, Ruedi
Krek, Wilhelm
description A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.
doi_str_mv 10.1073/pnas.1013699108
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301946529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41060929</jstor_id><sourcerecordid>41060929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-8826ed27cf89ee34c067a7b75edd702951d3b9fbed32b3ea77ca7cacadb473373</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEokvhzAmIuHAKHX8kti-V0IovqRIH6Nly7EnIsokXO6nUf88su2wLFyRL9mieeWc8b1E8Z_CWgRIXu8llejHRGMNAPyhWDAyrGmngYbEC4KrSksuz4knOGwAwtYbHxRlnAkAbWBXj2k0eU9njhPPgc9UvQ8BQhiH7eIPptoxdmTEtY9kOcXTpB8F56Cc3Lwlz2cVErOunmIdcuimUuxSPEVVSkGc3Y-l_t3laPOrcNuOz431eXH94_239qbr68vHz-t1V5WvdzJXWvMHAle-0QRTSQ6OcalWNISjgpmZBtKZrMQjeCnRKeUfHu9BKJYQS58XlQXe3tCMGj9Oc3Nbu0kA_uLXRDfbvzDR8t328sQKkFHVNAm-OAin-XDDPdqSF4HbrJoxLtqbRrBG10P8ldV1z4OQHka__ITdxSRPtgSChQAohCbo4QJ42lxN2p6EZ2L3ldm-5vbOcKl7e_-uJ_-PxPWBfeSenrbbUkhPw4gBs8hzTiZAMGjDcUP7VId-5aF2fhmyvv3KaAJiRTU3EL1J4x3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853704334</pqid></control><display><type>article</type><title>Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Cima, Igor ; Schiess, Ralph ; Wild, Peter ; Kaelin, Martin ; Schüffler, Peter ; Lange, Vinzenz ; Picotti, Paola ; Ossola, Reto ; Templeton, Arnoud ; Schubert, Olga ; Fuchs, Thomas ; Leippold, Thomas ; Wyler, Stephen ; Zehetner, Jens ; Jochum, Wolfram ; Buhmann, Joachim ; Cerny, Thomas ; Moch, Holger ; Gillessen, Silke ; Aebersold, Ruedi ; Krek, Wilhelm</creator><creatorcontrib>Cima, Igor ; Schiess, Ralph ; Wild, Peter ; Kaelin, Martin ; Schüffler, Peter ; Lange, Vinzenz ; Picotti, Paola ; Ossola, Reto ; Templeton, Arnoud ; Schubert, Olga ; Fuchs, Thomas ; Leippold, Thomas ; Wyler, Stephen ; Zehetner, Jens ; Jochum, Wolfram ; Buhmann, Joachim ; Cerny, Thomas ; Moch, Holger ; Gillessen, Silke ; Aebersold, Ruedi ; Krek, Wilhelm</creatorcontrib><description>A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1013699108</identifier><identifier>PMID: 21300890</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Animals ; Bioinformatics ; Biological markers ; Biological Sciences ; Biomarkers ; Biomarkers, Tumor - blood ; Cancer ; Computational Biology ; Computer applications ; Datasets ; Gene Silencing ; Genetics ; Glycoproteins ; Glycoproteins - blood ; Humans ; Integration ; Learning algorithms ; Male ; Medical diagnosis ; Medical prognosis ; Methods ; Mice ; Mutation ; Prognosis ; Prostate ; Prostate cancer ; Prostatic hyperplasia ; Prostatic Neoplasms - diagnosis ; Proteomics ; Proteomics - methods ; PTEN Phosphohydrolase - analysis ; PTEN Phosphohydrolase - genetics ; PTEN protein ; Regression analysis ; Signatures ; Tissues ; Tumor suppressor genes ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-02, Vol.108 (8), p.3342-3347</ispartof><rights>Copyright National Academy of Sciences Feb 22, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-8826ed27cf89ee34c067a7b75edd702951d3b9fbed32b3ea77ca7cacadb473373</citedby><cites>FETCH-LOGICAL-c586t-8826ed27cf89ee34c067a7b75edd702951d3b9fbed32b3ea77ca7cacadb473373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41060929$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41060929$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21300890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cima, Igor</creatorcontrib><creatorcontrib>Schiess, Ralph</creatorcontrib><creatorcontrib>Wild, Peter</creatorcontrib><creatorcontrib>Kaelin, Martin</creatorcontrib><creatorcontrib>Schüffler, Peter</creatorcontrib><creatorcontrib>Lange, Vinzenz</creatorcontrib><creatorcontrib>Picotti, Paola</creatorcontrib><creatorcontrib>Ossola, Reto</creatorcontrib><creatorcontrib>Templeton, Arnoud</creatorcontrib><creatorcontrib>Schubert, Olga</creatorcontrib><creatorcontrib>Fuchs, Thomas</creatorcontrib><creatorcontrib>Leippold, Thomas</creatorcontrib><creatorcontrib>Wyler, Stephen</creatorcontrib><creatorcontrib>Zehetner, Jens</creatorcontrib><creatorcontrib>Jochum, Wolfram</creatorcontrib><creatorcontrib>Buhmann, Joachim</creatorcontrib><creatorcontrib>Cerny, Thomas</creatorcontrib><creatorcontrib>Moch, Holger</creatorcontrib><creatorcontrib>Gillessen, Silke</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>Krek, Wilhelm</creatorcontrib><title>Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological markers</subject><subject>Biological Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Cancer</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Gene Silencing</subject><subject>Genetics</subject><subject>Glycoproteins</subject><subject>Glycoproteins - blood</subject><subject>Humans</subject><subject>Integration</subject><subject>Learning algorithms</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical prognosis</subject><subject>Methods</subject><subject>Mice</subject><subject>Mutation</subject><subject>Prognosis</subject><subject>Prostate</subject><subject>Prostate cancer</subject><subject>Prostatic hyperplasia</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>PTEN Phosphohydrolase - analysis</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN protein</subject><subject>Regression analysis</subject><subject>Signatures</subject><subject>Tissues</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEokvhzAmIuHAKHX8kti-V0IovqRIH6Nly7EnIsokXO6nUf88su2wLFyRL9mieeWc8b1E8Z_CWgRIXu8llejHRGMNAPyhWDAyrGmngYbEC4KrSksuz4knOGwAwtYbHxRlnAkAbWBXj2k0eU9njhPPgc9UvQ8BQhiH7eIPptoxdmTEtY9kOcXTpB8F56Cc3Lwlz2cVErOunmIdcuimUuxSPEVVSkGc3Y-l_t3laPOrcNuOz431eXH94_239qbr68vHz-t1V5WvdzJXWvMHAle-0QRTSQ6OcalWNISjgpmZBtKZrMQjeCnRKeUfHu9BKJYQS58XlQXe3tCMGj9Oc3Nbu0kA_uLXRDfbvzDR8t328sQKkFHVNAm-OAin-XDDPdqSF4HbrJoxLtqbRrBG10P8ldV1z4OQHka__ITdxSRPtgSChQAohCbo4QJ42lxN2p6EZ2L3ldm-5vbOcKl7e_-uJ_-PxPWBfeSenrbbUkhPw4gBs8hzTiZAMGjDcUP7VId-5aF2fhmyvv3KaAJiRTU3EL1J4x3s</recordid><startdate>20110222</startdate><enddate>20110222</enddate><creator>Cima, Igor</creator><creator>Schiess, Ralph</creator><creator>Wild, Peter</creator><creator>Kaelin, Martin</creator><creator>Schüffler, Peter</creator><creator>Lange, Vinzenz</creator><creator>Picotti, Paola</creator><creator>Ossola, Reto</creator><creator>Templeton, Arnoud</creator><creator>Schubert, Olga</creator><creator>Fuchs, Thomas</creator><creator>Leippold, Thomas</creator><creator>Wyler, Stephen</creator><creator>Zehetner, Jens</creator><creator>Jochum, Wolfram</creator><creator>Buhmann, Joachim</creator><creator>Cerny, Thomas</creator><creator>Moch, Holger</creator><creator>Gillessen, Silke</creator><creator>Aebersold, Ruedi</creator><creator>Krek, Wilhelm</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110222</creationdate><title>Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer</title><author>Cima, Igor ; Schiess, Ralph ; Wild, Peter ; Kaelin, Martin ; Schüffler, Peter ; Lange, Vinzenz ; Picotti, Paola ; Ossola, Reto ; Templeton, Arnoud ; Schubert, Olga ; Fuchs, Thomas ; Leippold, Thomas ; Wyler, Stephen ; Zehetner, Jens ; Jochum, Wolfram ; Buhmann, Joachim ; Cerny, Thomas ; Moch, Holger ; Gillessen, Silke ; Aebersold, Ruedi ; Krek, Wilhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-8826ed27cf89ee34c067a7b75edd702951d3b9fbed32b3ea77ca7cacadb473373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological markers</topic><topic>Biological Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Cancer</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Gene Silencing</topic><topic>Genetics</topic><topic>Glycoproteins</topic><topic>Glycoproteins - blood</topic><topic>Humans</topic><topic>Integration</topic><topic>Learning algorithms</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical prognosis</topic><topic>Methods</topic><topic>Mice</topic><topic>Mutation</topic><topic>Prognosis</topic><topic>Prostate</topic><topic>Prostate cancer</topic><topic>Prostatic hyperplasia</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>PTEN Phosphohydrolase - analysis</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN protein</topic><topic>Regression analysis</topic><topic>Signatures</topic><topic>Tissues</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cima, Igor</creatorcontrib><creatorcontrib>Schiess, Ralph</creatorcontrib><creatorcontrib>Wild, Peter</creatorcontrib><creatorcontrib>Kaelin, Martin</creatorcontrib><creatorcontrib>Schüffler, Peter</creatorcontrib><creatorcontrib>Lange, Vinzenz</creatorcontrib><creatorcontrib>Picotti, Paola</creatorcontrib><creatorcontrib>Ossola, Reto</creatorcontrib><creatorcontrib>Templeton, Arnoud</creatorcontrib><creatorcontrib>Schubert, Olga</creatorcontrib><creatorcontrib>Fuchs, Thomas</creatorcontrib><creatorcontrib>Leippold, Thomas</creatorcontrib><creatorcontrib>Wyler, Stephen</creatorcontrib><creatorcontrib>Zehetner, Jens</creatorcontrib><creatorcontrib>Jochum, Wolfram</creatorcontrib><creatorcontrib>Buhmann, Joachim</creatorcontrib><creatorcontrib>Cerny, Thomas</creatorcontrib><creatorcontrib>Moch, Holger</creatorcontrib><creatorcontrib>Gillessen, Silke</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>Krek, Wilhelm</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cima, Igor</au><au>Schiess, Ralph</au><au>Wild, Peter</au><au>Kaelin, Martin</au><au>Schüffler, Peter</au><au>Lange, Vinzenz</au><au>Picotti, Paola</au><au>Ossola, Reto</au><au>Templeton, Arnoud</au><au>Schubert, Olga</au><au>Fuchs, Thomas</au><au>Leippold, Thomas</au><au>Wyler, Stephen</au><au>Zehetner, Jens</au><au>Jochum, Wolfram</au><au>Buhmann, Joachim</au><au>Cerny, Thomas</au><au>Moch, Holger</au><au>Gillessen, Silke</au><au>Aebersold, Ruedi</au><au>Krek, Wilhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-02-22</date><risdate>2011</risdate><volume>108</volume><issue>8</issue><spage>3342</spage><epage>3347</epage><pages>3342-3347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21300890</pmid><doi>10.1073/pnas.1013699108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-02, Vol.108 (8), p.3342-3347
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201301946529
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Animal models
Animals
Bioinformatics
Biological markers
Biological Sciences
Biomarkers
Biomarkers, Tumor - blood
Cancer
Computational Biology
Computer applications
Datasets
Gene Silencing
Genetics
Glycoproteins
Glycoproteins - blood
Humans
Integration
Learning algorithms
Male
Medical diagnosis
Medical prognosis
Methods
Mice
Mutation
Prognosis
Prostate
Prostate cancer
Prostatic hyperplasia
Prostatic Neoplasms - diagnosis
Proteomics
Proteomics - methods
PTEN Phosphohydrolase - analysis
PTEN Phosphohydrolase - genetics
PTEN protein
Regression analysis
Signatures
Tissues
Tumor suppressor genes
Tumors
title Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T18%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer%20genetics-guided%20discovery%20of%20serum%20biomarker%20signatures%20for%20diagnosis%20and%20prognosis%20of%20prostate%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cima,%20Igor&rft.date=2011-02-22&rft.volume=108&rft.issue=8&rft.spage=3342&rft.epage=3347&rft.pages=3342-3347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1013699108&rft_dat=%3Cjstor_fao_a%3E41060929%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853704334&rft_id=info:pmid/21300890&rft_jstor_id=41060929&rfr_iscdi=true