Reticulocyte and Erythrocyte Binding-Like Proteins Function Cooperatively in Invasion of Human Erythrocytes by Malaria Parasites
Plasmodium falciparum causes the most severe form of malaria in humans and invades erythrocytes using multiple ligand-receptor interactions. Two important protein families involved in erythrocyte binding are the erythrocyte binding-like (EBL) and the reticulocyte binding-like (RBL or P. falciparum R...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2011-03, Vol.79 (3), p.1107-1117 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plasmodium falciparum causes the most severe form of malaria in humans and invades erythrocytes using multiple ligand-receptor interactions. Two important protein families involved in erythrocyte binding are the erythrocyte binding-like (EBL) and the reticulocyte binding-like (RBL or P. falciparum Rh [PfRh]) proteins. We constructed P. falciparum lines lacking expression of EBL proteins by creating single and double knockouts of the corresponding genes for eba-175, eba-181, and eba-140 and show that the EBL and PfRh proteins function cooperatively, consistent with them playing a similar role in merozoite invasion. We provide evidence that PfRh and EBL proteins functionally interact, as loss of function of EBA-181 ablates the ability of PfRh2a/b protein antibodies to inhibit merozoite invasion. Additionally, loss of function of some ebl genes results in selection for increased transcription of the PfRh family. This provides a rational basis for considering PfRh and EBL proteins for use as a combination vaccine against P. falciparum. We immunized rabbits with combinations of PfRh and EBL proteins to test the ability of antibodies to block merozoite invasion in growth inhibition assays. A combination of EBA-175, PfRh2a/b, and PfRh4 recombinant proteins induced antibodies that potently blocked merozoite invasion. This validates the use of a combination of these ligands as a potential vaccine that would have broad activity against P. falciparum. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/iai.01021-10 |