actin-myosin interface
In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-Å resolution to obtain an atomic m...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-07, Vol.107 (28), p.12529-12534 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12534 |
---|---|
container_issue | 28 |
container_start_page | 12529 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Lorenz, Michael Holmes, Kenneth C |
description | In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-Å resolution to obtain an atomic model of the strong-binding (rigor) actin-myosin interface. The constraining force resulting from the EM map during the molecular dynamics simulation was sufficient to convert the myosin head from the initial weak-binding state to the strong-binding (rigor) state. Our actin-myosin model suggests extensive contacts between actin and the myosin head (S1). S1 binds to two actin monomers. The contact surface between actin and S1 has increased dramatically compared with previous models. A number of loops in S1 and actin are involved in establishing the interface. Our model also suggests how the loop carrying the critical Arg 405 Glu mutation in S1 found in a familial cardiomyopathy might be functionally involved. |
doi_str_mv | 10.1073/pnas.1003604107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301867289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20724288</jstor_id><sourcerecordid>20724288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-d864834f76619e448b059e4372d13f268a9fca0d5212df56c0709cd620913f3a3</originalsourceid><addsrcrecordid>eNpdkM1PGzEQxa2KqgTaaznxoV562mY8_r4gIUQpElIPLWfLeG3YKFkHe4PEf4-XpAF6Gsvze09vHiEHFH5QUGy67F2pL2ASeP34QCYUDG0kN7BDJgCoGs2R75K9UmYAYISGT2QXQdJRMSFfnR-6vlk8pdL1J10_hBydD5_Jx-jmJXzZzH1y8_Pi7_mv5vr35dX52XXjhZBD02rJNeNRSUlN4FzfgqiTKWwpiyi1M9E7aAVSbKOQHhQY30qsIVlkju2T07XvcnW7CK0P_ZDd3C5zt3D5ySbX2febvru3d-nRogEptKoG3zcGOT2sQhnsois-zOeuD2lVrGLMKGO0ruS3_8hZWuW-XmclZUxxFKPddA35nErJIW6jULBj43Zs3L42XhVHby_Y8v8qrsDJBhiVr3bKorYUBZqKHK6RWRlSfmOhkONL9OP1Prpk3V3uir35g0AZUC0VasOeAQk5l0U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613374257</pqid></control><display><type>article</type><title>actin-myosin interface</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lorenz, Michael ; Holmes, Kenneth C</creator><creatorcontrib>Lorenz, Michael ; Holmes, Kenneth C</creatorcontrib><description>In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-Å resolution to obtain an atomic model of the strong-binding (rigor) actin-myosin interface. The constraining force resulting from the EM map during the molecular dynamics simulation was sufficient to convert the myosin head from the initial weak-binding state to the strong-binding (rigor) state. Our actin-myosin model suggests extensive contacts between actin and the myosin head (S1). S1 binds to two actin monomers. The contact surface between actin and S1 has increased dramatically compared with previous models. A number of loops in S1 and actin are involved in establishing the interface. Our model also suggests how the loop carrying the critical Arg 405 Glu mutation in S1 found in a familial cardiomyopathy might be functionally involved.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003604107</identifier><identifier>PMID: 20616041</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Actins - chemistry ; Actins - metabolism ; Binding sites ; Biological Sciences ; Cardiomyopathies ; Chimeras ; Contact potentials ; Coordinate systems ; Crystal structure ; Electrostatics ; Microscopy ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecules ; Monomers ; Muscle Contraction - physiology ; Mutation ; Myosins - chemistry ; Myosins - metabolism ; Nucleotides ; Proteins ; Simulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (28), p.12529-12534</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 13, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-d864834f76619e448b059e4372d13f268a9fca0d5212df56c0709cd620913f3a3</citedby><cites>FETCH-LOGICAL-c556t-d864834f76619e448b059e4372d13f268a9fca0d5212df56c0709cd620913f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20724288$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20724288$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27915,27916,53782,53784,58008,58241</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20616041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, Michael</creatorcontrib><creatorcontrib>Holmes, Kenneth C</creatorcontrib><title>actin-myosin interface</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-Å resolution to obtain an atomic model of the strong-binding (rigor) actin-myosin interface. The constraining force resulting from the EM map during the molecular dynamics simulation was sufficient to convert the myosin head from the initial weak-binding state to the strong-binding (rigor) state. Our actin-myosin model suggests extensive contacts between actin and the myosin head (S1). S1 binds to two actin monomers. The contact surface between actin and S1 has increased dramatically compared with previous models. A number of loops in S1 and actin are involved in establishing the interface. Our model also suggests how the loop carrying the critical Arg 405 Glu mutation in S1 found in a familial cardiomyopathy might be functionally involved.</description><subject>Actins</subject><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cardiomyopathies</subject><subject>Chimeras</subject><subject>Contact potentials</subject><subject>Coordinate systems</subject><subject>Crystal structure</subject><subject>Electrostatics</subject><subject>Microscopy</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Muscle Contraction - physiology</subject><subject>Mutation</subject><subject>Myosins - chemistry</subject><subject>Myosins - metabolism</subject><subject>Nucleotides</subject><subject>Proteins</subject><subject>Simulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkM1PGzEQxa2KqgTaaznxoV562mY8_r4gIUQpElIPLWfLeG3YKFkHe4PEf4-XpAF6Gsvze09vHiEHFH5QUGy67F2pL2ASeP34QCYUDG0kN7BDJgCoGs2R75K9UmYAYISGT2QXQdJRMSFfnR-6vlk8pdL1J10_hBydD5_Jx-jmJXzZzH1y8_Pi7_mv5vr35dX52XXjhZBD02rJNeNRSUlN4FzfgqiTKWwpiyi1M9E7aAVSbKOQHhQY30qsIVlkju2T07XvcnW7CK0P_ZDd3C5zt3D5ySbX2febvru3d-nRogEptKoG3zcGOT2sQhnsois-zOeuD2lVrGLMKGO0ruS3_8hZWuW-XmclZUxxFKPddA35nErJIW6jULBj43Zs3L42XhVHby_Y8v8qrsDJBhiVr3bKorYUBZqKHK6RWRlSfmOhkONL9OP1Prpk3V3uir35g0AZUC0VasOeAQk5l0U</recordid><startdate>20100713</startdate><enddate>20100713</enddate><creator>Lorenz, Michael</creator><creator>Holmes, Kenneth C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100713</creationdate><title>actin-myosin interface</title><author>Lorenz, Michael ; Holmes, Kenneth C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-d864834f76619e448b059e4372d13f268a9fca0d5212df56c0709cd620913f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actins</topic><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cardiomyopathies</topic><topic>Chimeras</topic><topic>Contact potentials</topic><topic>Coordinate systems</topic><topic>Crystal structure</topic><topic>Electrostatics</topic><topic>Microscopy</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Muscle Contraction - physiology</topic><topic>Mutation</topic><topic>Myosins - chemistry</topic><topic>Myosins - metabolism</topic><topic>Nucleotides</topic><topic>Proteins</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, Michael</creatorcontrib><creatorcontrib>Holmes, Kenneth C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, Michael</au><au>Holmes, Kenneth C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>actin-myosin interface</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-07-13</date><risdate>2010</risdate><volume>107</volume><issue>28</issue><spage>12529</spage><epage>12534</epage><pages>12529-12534</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-Å resolution to obtain an atomic model of the strong-binding (rigor) actin-myosin interface. The constraining force resulting from the EM map during the molecular dynamics simulation was sufficient to convert the myosin head from the initial weak-binding state to the strong-binding (rigor) state. Our actin-myosin model suggests extensive contacts between actin and the myosin head (S1). S1 binds to two actin monomers. The contact surface between actin and S1 has increased dramatically compared with previous models. A number of loops in S1 and actin are involved in establishing the interface. Our model also suggests how the loop carrying the critical Arg 405 Glu mutation in S1 found in a familial cardiomyopathy might be functionally involved.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20616041</pmid><doi>10.1073/pnas.1003604107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (28), p.12529-12534 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201301867289 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actins Actins - chemistry Actins - metabolism Binding sites Biological Sciences Cardiomyopathies Chimeras Contact potentials Coordinate systems Crystal structure Electrostatics Microscopy Molecular dynamics Molecular Dynamics Simulation Molecules Monomers Muscle Contraction - physiology Mutation Myosins - chemistry Myosins - metabolism Nucleotides Proteins Simulation |
title | actin-myosin interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=actin-myosin%20interface&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lorenz,%20Michael&rft.date=2010-07-13&rft.volume=107&rft.issue=28&rft.spage=12529&rft.epage=12534&rft.pages=12529-12534&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003604107&rft_dat=%3Cjstor_fao_a%3E20724288%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613374257&rft_id=info:pmid/20616041&rft_jstor_id=20724288&rfr_iscdi=true |