Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues

Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (5), p.1966-1970
Hauptverfasser: Jiráček, Jiří, Žáková, Lenka, Antolíková, Emília, Watson, Christopher J, Turkenburg, Johan P, Dodson, Guy G, Brzozowski, Andrzej M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1970
container_issue 5
container_start_page 1966
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Jiráček, Jiří
Žáková, Lenka
Antolíková, Emília
Watson, Christopher J
Turkenburg, Johan P
Dodson, Guy G
Brzozowski, Andrzej M
description Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B²⁶). They show a structural convergence in the form of a new β-turn at B²⁴-B²⁶. We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the β-turn at B²⁴-B²⁶ associated with a trans to cis isomerisation at the B²⁵-B²⁶ peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B²⁵-B²⁶ peptide bond or by the insertion of certain D-amino acids at B²⁶. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.
doi_str_mv 10.1073/pnas.0911785107
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301800329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536517</jstor_id><sourcerecordid>40536517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9e9e8504eca22c7aa22b18dd3a7bedb09bf608802c36e4eef363be7a79bdaa343</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEokvhzAmIuHBKO44d27lUQhUflSpxgJ4tx5kkXiX2Yicr-u9xuu22cLE1nmdez8ybZW8JnBEQ9HzndDyDmhAhq_TwLNuQFBWc1fA82wCUopCsZCfZqxi3AFBXEl5mJyUQSiUjm-zP1bQbrdGz9S7mnQ_5PGCuzWz3uIZT7rt8WCbtcuviMlqXNzpim3t3R8Y5LGZegh5z490eQ4_O4F2R7Yfx9kFqSFLeJWWnR98vGF9nLzo9Rnxzf59mN1-__Lr8Xlz_-HZ1-fm6MEzKuaixRlkBQ6PL0gidzobItqVaNNg2UDcdBymhNJQjQ-wopw0KLeqm1ZoyeppdHHR3SzNha9DNqVm1C3bS4VZ5bdW_GWcH1fu9KiXlvKyTwKd7geB_p8ZnNdlocBy1Q79EJSjlRJaCJPLjf-TWLyENHFVaOKO0Apmg8wNkgo8xYHdshYBaPVWrp-rR01Tx_ukER_7BxCfAWvkoJ1SlSM15At4dgG2cfTgSDCrKK7L-8OGQ77RXug82qpufqzwQCUDTEv4Cm4y9yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201433508</pqid></control><display><type>article</type><title>Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiráček, Jiří ; Žáková, Lenka ; Antolíková, Emília ; Watson, Christopher J ; Turkenburg, Johan P ; Dodson, Guy G ; Brzozowski, Andrzej M</creator><creatorcontrib>Jiráček, Jiří ; Žáková, Lenka ; Antolíková, Emília ; Watson, Christopher J ; Turkenburg, Johan P ; Dodson, Guy G ; Brzozowski, Andrzej M</creatorcontrib><description>Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B²⁶). They show a structural convergence in the form of a new β-turn at B²⁴-B²⁶. We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the β-turn at B²⁴-B²⁶ associated with a trans to cis isomerisation at the B²⁵-B²⁶ peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B²⁵-B²⁶ peptide bond or by the insertion of certain D-amino acids at B²⁶. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0911785107</identifier><identifier>PMID: 20133841</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Antigens, CD - metabolism ; Atoms ; Binding sites ; Biochemistry ; Biological Sciences ; Chemical bonding ; Crystal structure ; Crystallography, X-Ray ; Glucose ; Hormones ; Humans ; Hydrogen bonds ; In Vitro Techniques ; Insulin ; Insulin - analogs &amp; derivatives ; Insulin - chemistry ; Insulin - metabolism ; Kinetics ; Models, Molecular ; Molecules ; Monomers ; Peptides ; Protein Conformation ; Protein Structure, Secondary ; Protein Subunits ; Proteins ; Receptor, Insulin - metabolism ; Receptors ; Static Electricity ; T cell receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (5), p.1966-1970</ispartof><rights>Copyright National Academy of Sciences Feb 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9e9e8504eca22c7aa22b18dd3a7bedb09bf608802c36e4eef363be7a79bdaa343</citedby><cites>FETCH-LOGICAL-c488t-9e9e8504eca22c7aa22b18dd3a7bedb09bf608802c36e4eef363be7a79bdaa343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536517$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536517$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiráček, Jiří</creatorcontrib><creatorcontrib>Žáková, Lenka</creatorcontrib><creatorcontrib>Antolíková, Emília</creatorcontrib><creatorcontrib>Watson, Christopher J</creatorcontrib><creatorcontrib>Turkenburg, Johan P</creatorcontrib><creatorcontrib>Dodson, Guy G</creatorcontrib><creatorcontrib>Brzozowski, Andrzej M</creatorcontrib><title>Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B²⁶). They show a structural convergence in the form of a new β-turn at B²⁴-B²⁶. We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the β-turn at B²⁴-B²⁶ associated with a trans to cis isomerisation at the B²⁵-B²⁶ peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B²⁵-B²⁶ peptide bond or by the insertion of certain D-amino acids at B²⁶. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.</description><subject>Amino acids</subject><subject>Antigens, CD - metabolism</subject><subject>Atoms</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chemical bonding</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Glucose</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>In Vitro Techniques</subject><subject>Insulin</subject><subject>Insulin - analogs &amp; derivatives</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Peptides</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Subunits</subject><subject>Proteins</subject><subject>Receptor, Insulin - metabolism</subject><subject>Receptors</subject><subject>Static Electricity</subject><subject>T cell receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEokvhzAmIuHBKO44d27lUQhUflSpxgJ4tx5kkXiX2Yicr-u9xuu22cLE1nmdez8ybZW8JnBEQ9HzndDyDmhAhq_TwLNuQFBWc1fA82wCUopCsZCfZqxi3AFBXEl5mJyUQSiUjm-zP1bQbrdGz9S7mnQ_5PGCuzWz3uIZT7rt8WCbtcuviMlqXNzpim3t3R8Y5LGZegh5z490eQ4_O4F2R7Yfx9kFqSFLeJWWnR98vGF9nLzo9Rnxzf59mN1-__Lr8Xlz_-HZ1-fm6MEzKuaixRlkBQ6PL0gidzobItqVaNNg2UDcdBymhNJQjQ-wopw0KLeqm1ZoyeppdHHR3SzNha9DNqVm1C3bS4VZ5bdW_GWcH1fu9KiXlvKyTwKd7geB_p8ZnNdlocBy1Q79EJSjlRJaCJPLjf-TWLyENHFVaOKO0Apmg8wNkgo8xYHdshYBaPVWrp-rR01Tx_ukER_7BxCfAWvkoJ1SlSM15At4dgG2cfTgSDCrKK7L-8OGQ77RXug82qpufqzwQCUDTEv4Cm4y9yg</recordid><startdate>20100202</startdate><enddate>20100202</enddate><creator>Jiráček, Jiří</creator><creator>Žáková, Lenka</creator><creator>Antolíková, Emília</creator><creator>Watson, Christopher J</creator><creator>Turkenburg, Johan P</creator><creator>Dodson, Guy G</creator><creator>Brzozowski, Andrzej M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100202</creationdate><title>Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues</title><author>Jiráček, Jiří ; Žáková, Lenka ; Antolíková, Emília ; Watson, Christopher J ; Turkenburg, Johan P ; Dodson, Guy G ; Brzozowski, Andrzej M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9e9e8504eca22c7aa22b18dd3a7bedb09bf608802c36e4eef363be7a79bdaa343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino acids</topic><topic>Antigens, CD - metabolism</topic><topic>Atoms</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chemical bonding</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Glucose</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>In Vitro Techniques</topic><topic>Insulin</topic><topic>Insulin - analogs &amp; derivatives</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Peptides</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Subunits</topic><topic>Proteins</topic><topic>Receptor, Insulin - metabolism</topic><topic>Receptors</topic><topic>Static Electricity</topic><topic>T cell receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiráček, Jiří</creatorcontrib><creatorcontrib>Žáková, Lenka</creatorcontrib><creatorcontrib>Antolíková, Emília</creatorcontrib><creatorcontrib>Watson, Christopher J</creatorcontrib><creatorcontrib>Turkenburg, Johan P</creatorcontrib><creatorcontrib>Dodson, Guy G</creatorcontrib><creatorcontrib>Brzozowski, Andrzej M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiráček, Jiří</au><au>Žáková, Lenka</au><au>Antolíková, Emília</au><au>Watson, Christopher J</au><au>Turkenburg, Johan P</au><au>Dodson, Guy G</au><au>Brzozowski, Andrzej M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-02</date><risdate>2010</risdate><volume>107</volume><issue>5</issue><spage>1966</spage><epage>1970</epage><pages>1966-1970</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B²⁶). They show a structural convergence in the form of a new β-turn at B²⁴-B²⁶. We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the β-turn at B²⁴-B²⁶ associated with a trans to cis isomerisation at the B²⁵-B²⁶ peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B²⁵-B²⁶ peptide bond or by the insertion of certain D-amino acids at B²⁶. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133841</pmid><doi>10.1073/pnas.0911785107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (5), p.1966-1970
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201301800329
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Antigens, CD - metabolism
Atoms
Binding sites
Biochemistry
Biological Sciences
Chemical bonding
Crystal structure
Crystallography, X-Ray
Glucose
Hormones
Humans
Hydrogen bonds
In Vitro Techniques
Insulin
Insulin - analogs & derivatives
Insulin - chemistry
Insulin - metabolism
Kinetics
Models, Molecular
Molecules
Monomers
Peptides
Protein Conformation
Protein Structure, Secondary
Protein Subunits
Proteins
Receptor, Insulin - metabolism
Receptors
Static Electricity
T cell receptors
title Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20for%20the%20active%20form%20of%20human%20insulin%20based%20on%20the%20structural%20convergence%20of%20highly%20active%20hormone%20analogues&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jir%C3%A1%C4%8Dek,%20Ji%C5%99%C3%AD&rft.date=2010-02-02&rft.volume=107&rft.issue=5&rft.spage=1966&rft.epage=1970&rft.pages=1966-1970&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0911785107&rft_dat=%3Cjstor_fao_a%3E40536517%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201433508&rft_id=info:pmid/20133841&rft_jstor_id=40536517&rfr_iscdi=true