CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes

Production of H₂O₂ follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H₂O₂ generation and its regulation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and Immunity 2010-01, Vol.78 (1), p.241-252
Hauptverfasser: Kietzman, Colin C, Caparon, Michael G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 1
container_start_page 241
container_title Infection and Immunity
container_volume 78
creator Kietzman, Colin C
Caparon, Michael G
description Production of H₂O₂ follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H₂O₂ generation and its regulation. Deletion of the gene encoding lactate oxidase (lctO) or culture in the presence of glucose eliminated H₂O₂ production, implicating carbohydrate regulation of lctO as a key element of growth phase control. In examining known carbohydrate-responsive regulators, deletion of the gene encoding CcpA but not that encoding LacD.1 resulted in both derepression and an uncoupling of lctO transcription from its growth phase pattern. Expanding this analysis to additional virulence factors demonstrated both negative (cfa, encoding CAMP factor) and positive (speB, encoding a cysteine protease) regulation by CcpA and that CcpA mutants were highly cytotoxic for cultured macrophages. This latter property resulted from enhanced transcription of the streptolysin S biogenesis operon. Examination of CcpA-promoter interactions using a DNA pull-down assay mimicking physiological conditions showed direct binding to the promoters of lctO and speB but not those of sagA. CcpA but not LacD.1 mutants were attenuated in a murine model of soft-tissue infection, and analysis of gene expression in infected tissue indicated that CcpA mutants had altered expression of lctO, cfa, and speB but not the indirectly regulated sagA gene. Taken together, these data show that CcpA regulates virulence genes via at least three distinct mechanisms and that disruption of growth phase regulation alters transcriptional patterns in infected tissues.
doi_str_mv 10.1128/IAI.00746-09
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301717250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21294039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-42bf6eade9b5a10daf729ef48cf9f9feccffd4d3a0e27ab2121d30b1dce0cc53</originalsourceid><addsrcrecordid>eNpVkUGP0zAQhSMEYsvCjTP4AidSbMeJ4wtSVWCpVAmJLVytiTNOjZI42Alo_z0urRaQD9aMP70345dlzxldM8brt7vNbk2pFFVO1YNsxaiq87Lk_GG2opSpXJWVvMqexPg9lUKI-nF2xVQtGJXVKjtszbQhMLZkD-b9mpGNtWhmcsBh8gF68gW7pYfZ-ZF4S27ngNPsjTdmiWS68x2OGMk3F5YeR4Pk5lQ_zR5Z6CM-u9zX2eHjh8P2U77_fLPbbva5EaqYc8EbWyG0qJoSGG3BSq7QitpYlQ4aY20r2gIocgkNZ5y1BW1Ya5AaUxbX2buz7LQ0A6buOKeJ9RTcAOFOe3D6_5fRHXXnf2ouVc1knQReXwSC_7FgnPXgosG-hxH9EnVyVIIWKoFvzqAJPsaA9t6EUX1KQacU9J8UND3hL_4d7C98-fYEvLoAEA30NsBoXLznOBeiKpVMHDlzR9cdf7mAGuKgXVpM1pppLlhCXp4RC15DF5LM11tOWUGZZJKXtPgN-C2l1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21294039</pqid></control><display><type>article</type><title>CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kietzman, Colin C ; Caparon, Michael G</creator><creatorcontrib>Kietzman, Colin C ; Caparon, Michael G</creatorcontrib><description>Production of H₂O₂ follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H₂O₂ generation and its regulation. Deletion of the gene encoding lactate oxidase (lctO) or culture in the presence of glucose eliminated H₂O₂ production, implicating carbohydrate regulation of lctO as a key element of growth phase control. In examining known carbohydrate-responsive regulators, deletion of the gene encoding CcpA but not that encoding LacD.1 resulted in both derepression and an uncoupling of lctO transcription from its growth phase pattern. Expanding this analysis to additional virulence factors demonstrated both negative (cfa, encoding CAMP factor) and positive (speB, encoding a cysteine protease) regulation by CcpA and that CcpA mutants were highly cytotoxic for cultured macrophages. This latter property resulted from enhanced transcription of the streptolysin S biogenesis operon. Examination of CcpA-promoter interactions using a DNA pull-down assay mimicking physiological conditions showed direct binding to the promoters of lctO and speB but not those of sagA. CcpA but not LacD.1 mutants were attenuated in a murine model of soft-tissue infection, and analysis of gene expression in infected tissue indicated that CcpA mutants had altered expression of lctO, cfa, and speB but not the indirectly regulated sagA gene. Taken together, these data show that CcpA regulates virulence genes via at least three distinct mechanisms and that disruption of growth phase regulation alters transcriptional patterns in infected tissues.</description><identifier>ISSN: 0019-9567</identifier><identifier>EISSN: 1098-5522</identifier><identifier>DOI: 10.1128/IAI.00746-09</identifier><identifier>PMID: 19841076</identifier><identifier>CODEN: INFIBR</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Animal models ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Carbohydrates ; Cyclic AMP ; Cysteine proteinase ; Cytotoxicity ; Data processing ; Derepression ; DNA ; Fundamental and applied biological sciences. Psychology ; Gene deletion ; Gene Expression Regulation, Bacterial - drug effects ; Gene Expression Regulation, Bacterial - physiology ; Gene Expression Regulation, Enzymologic - physiology ; Gene regulation ; Glucose ; Glucose - pharmacology ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Infection ; Lactate oxidase ; Macrophages ; Microbiology ; Mimicry ; Miscellaneous ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Molecular Pathogenesis ; Mutation ; Operons ; Promoter Regions, Genetic ; Promoters ; Protein Binding ; sagA gene ; Streptococcus pyogenes ; Streptococcus pyogenes - drug effects ; Streptococcus pyogenes - genetics ; Streptococcus pyogenes - metabolism ; Streptococcus pyogenes - pathogenicity ; Transcription ; Virulence ; virulence factors</subject><ispartof>Infection and Immunity, 2010-01, Vol.78 (1), p.241-252</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Society for Microbiology 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-42bf6eade9b5a10daf729ef48cf9f9feccffd4d3a0e27ab2121d30b1dce0cc53</citedby><cites>FETCH-LOGICAL-c493t-42bf6eade9b5a10daf729ef48cf9f9feccffd4d3a0e27ab2121d30b1dce0cc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798178/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798178/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22446597$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19841076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kietzman, Colin C</creatorcontrib><creatorcontrib>Caparon, Michael G</creatorcontrib><title>CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes</title><title>Infection and Immunity</title><addtitle>Infect Immun</addtitle><description>Production of H₂O₂ follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H₂O₂ generation and its regulation. Deletion of the gene encoding lactate oxidase (lctO) or culture in the presence of glucose eliminated H₂O₂ production, implicating carbohydrate regulation of lctO as a key element of growth phase control. In examining known carbohydrate-responsive regulators, deletion of the gene encoding CcpA but not that encoding LacD.1 resulted in both derepression and an uncoupling of lctO transcription from its growth phase pattern. Expanding this analysis to additional virulence factors demonstrated both negative (cfa, encoding CAMP factor) and positive (speB, encoding a cysteine protease) regulation by CcpA and that CcpA mutants were highly cytotoxic for cultured macrophages. This latter property resulted from enhanced transcription of the streptolysin S biogenesis operon. Examination of CcpA-promoter interactions using a DNA pull-down assay mimicking physiological conditions showed direct binding to the promoters of lctO and speB but not those of sagA. CcpA but not LacD.1 mutants were attenuated in a murine model of soft-tissue infection, and analysis of gene expression in infected tissue indicated that CcpA mutants had altered expression of lctO, cfa, and speB but not the indirectly regulated sagA gene. Taken together, these data show that CcpA regulates virulence genes via at least three distinct mechanisms and that disruption of growth phase regulation alters transcriptional patterns in infected tissues.</description><subject>Animal models</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Carbohydrates</subject><subject>Cyclic AMP</subject><subject>Cysteine proteinase</subject><subject>Cytotoxicity</subject><subject>Data processing</subject><subject>Derepression</subject><subject>DNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene deletion</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Expression Regulation, Bacterial - physiology</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene regulation</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Infection</subject><subject>Lactate oxidase</subject><subject>Macrophages</subject><subject>Microbiology</subject><subject>Mimicry</subject><subject>Miscellaneous</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Molecular Pathogenesis</subject><subject>Mutation</subject><subject>Operons</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>Protein Binding</subject><subject>sagA gene</subject><subject>Streptococcus pyogenes</subject><subject>Streptococcus pyogenes - drug effects</subject><subject>Streptococcus pyogenes - genetics</subject><subject>Streptococcus pyogenes - metabolism</subject><subject>Streptococcus pyogenes - pathogenicity</subject><subject>Transcription</subject><subject>Virulence</subject><subject>virulence factors</subject><issn>0019-9567</issn><issn>1098-5522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUGP0zAQhSMEYsvCjTP4AidSbMeJ4wtSVWCpVAmJLVytiTNOjZI42Alo_z0urRaQD9aMP70345dlzxldM8brt7vNbk2pFFVO1YNsxaiq87Lk_GG2opSpXJWVvMqexPg9lUKI-nF2xVQtGJXVKjtszbQhMLZkD-b9mpGNtWhmcsBh8gF68gW7pYfZ-ZF4S27ngNPsjTdmiWS68x2OGMk3F5YeR4Pk5lQ_zR5Z6CM-u9zX2eHjh8P2U77_fLPbbva5EaqYc8EbWyG0qJoSGG3BSq7QitpYlQ4aY20r2gIocgkNZ5y1BW1Ya5AaUxbX2buz7LQ0A6buOKeJ9RTcAOFOe3D6_5fRHXXnf2ouVc1knQReXwSC_7FgnPXgosG-hxH9EnVyVIIWKoFvzqAJPsaA9t6EUX1KQacU9J8UND3hL_4d7C98-fYEvLoAEA30NsBoXLznOBeiKpVMHDlzR9cdf7mAGuKgXVpM1pppLlhCXp4RC15DF5LM11tOWUGZZJKXtPgN-C2l1g</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Kietzman, Colin C</creator><creator>Caparon, Michael G</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes</title><author>Kietzman, Colin C ; Caparon, Michael G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-42bf6eade9b5a10daf729ef48cf9f9feccffd4d3a0e27ab2121d30b1dce0cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal models</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Carbohydrates</topic><topic>Cyclic AMP</topic><topic>Cysteine proteinase</topic><topic>Cytotoxicity</topic><topic>Data processing</topic><topic>Derepression</topic><topic>DNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene deletion</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Expression Regulation, Bacterial - physiology</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene regulation</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Infection</topic><topic>Lactate oxidase</topic><topic>Macrophages</topic><topic>Microbiology</topic><topic>Mimicry</topic><topic>Miscellaneous</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Molecular Pathogenesis</topic><topic>Mutation</topic><topic>Operons</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>Protein Binding</topic><topic>sagA gene</topic><topic>Streptococcus pyogenes</topic><topic>Streptococcus pyogenes - drug effects</topic><topic>Streptococcus pyogenes - genetics</topic><topic>Streptococcus pyogenes - metabolism</topic><topic>Streptococcus pyogenes - pathogenicity</topic><topic>Transcription</topic><topic>Virulence</topic><topic>virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kietzman, Colin C</creatorcontrib><creatorcontrib>Caparon, Michael G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and Immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kietzman, Colin C</au><au>Caparon, Michael G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes</atitle><jtitle>Infection and Immunity</jtitle><addtitle>Infect Immun</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>78</volume><issue>1</issue><spage>241</spage><epage>252</epage><pages>241-252</pages><issn>0019-9567</issn><eissn>1098-5522</eissn><coden>INFIBR</coden><abstract>Production of H₂O₂ follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H₂O₂ generation and its regulation. Deletion of the gene encoding lactate oxidase (lctO) or culture in the presence of glucose eliminated H₂O₂ production, implicating carbohydrate regulation of lctO as a key element of growth phase control. In examining known carbohydrate-responsive regulators, deletion of the gene encoding CcpA but not that encoding LacD.1 resulted in both derepression and an uncoupling of lctO transcription from its growth phase pattern. Expanding this analysis to additional virulence factors demonstrated both negative (cfa, encoding CAMP factor) and positive (speB, encoding a cysteine protease) regulation by CcpA and that CcpA mutants were highly cytotoxic for cultured macrophages. This latter property resulted from enhanced transcription of the streptolysin S biogenesis operon. Examination of CcpA-promoter interactions using a DNA pull-down assay mimicking physiological conditions showed direct binding to the promoters of lctO and speB but not those of sagA. CcpA but not LacD.1 mutants were attenuated in a murine model of soft-tissue infection, and analysis of gene expression in infected tissue indicated that CcpA mutants had altered expression of lctO, cfa, and speB but not the indirectly regulated sagA gene. Taken together, these data show that CcpA regulates virulence genes via at least three distinct mechanisms and that disruption of growth phase regulation alters transcriptional patterns in infected tissues.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19841076</pmid><doi>10.1128/IAI.00746-09</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-9567
ispartof Infection and Immunity, 2010-01, Vol.78 (1), p.241-252
issn 0019-9567
1098-5522
language eng
recordid cdi_fao_agris_US201301717250
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animal models
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
Carbohydrates
Cyclic AMP
Cysteine proteinase
Cytotoxicity
Data processing
Derepression
DNA
Fundamental and applied biological sciences. Psychology
Gene deletion
Gene Expression Regulation, Bacterial - drug effects
Gene Expression Regulation, Bacterial - physiology
Gene Expression Regulation, Enzymologic - physiology
Gene regulation
Glucose
Glucose - pharmacology
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Infection
Lactate oxidase
Macrophages
Microbiology
Mimicry
Miscellaneous
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
Molecular Pathogenesis
Mutation
Operons
Promoter Regions, Genetic
Promoters
Protein Binding
sagA gene
Streptococcus pyogenes
Streptococcus pyogenes - drug effects
Streptococcus pyogenes - genetics
Streptococcus pyogenes - metabolism
Streptococcus pyogenes - pathogenicity
Transcription
Virulence
virulence factors
title CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CcpA%20and%20LacD.1%20Affect%20Temporal%20Regulation%20of%20Streptococcus%20pyogenes%20Virulence%20Genes&rft.jtitle=Infection%20and%20Immunity&rft.au=Kietzman,%20Colin%20C&rft.date=2010-01-01&rft.volume=78&rft.issue=1&rft.spage=241&rft.epage=252&rft.pages=241-252&rft.issn=0019-9567&rft.eissn=1098-5522&rft.coden=INFIBR&rft_id=info:doi/10.1128/IAI.00746-09&rft_dat=%3Cproquest_fao_a%3E21294039%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21294039&rft_id=info:pmid/19841076&rfr_iscdi=true