Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation
Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-12, Vol.106 (49), p.20978-20983 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20983 |
---|---|
container_issue | 49 |
container_start_page | 20978 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Nakamura, Yuki Koizumi, Ryota Shui, Guanghou Shimojima, Mie Wenk, Markus R Ito, Toshiro Ohta, Hiroyuki |
description | Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation. |
doi_str_mv | 10.1073/pnas.0907173106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301713657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536107</jstor_id><sourcerecordid>40536107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotuFMyfA6o1D2rGd2PGlUlXxJVXiAD1bs4nTeMnGwfa27H-P01114cRpDvOb9-bpEfKGwTkDJS6mEeM5aFBMCQbyGVkw0KyQpYbnZAHAVVGXvDwhpzGuAUBXNbwkJ0xrLkouF8RfBVy51k_RRTq4yY2RbmzrMFlqtz8x7HxyDZ0w9Q-4o757hNrMJFz5wcUNxbGljZ8sbYLLLA7Djj641NOp93HqZ6WYMNxjcn58RV50OET7-jCX5PbTxx_XX4qbb5-_Xl_dFE0l61Rwptuy7TSreM0FQN3IKkdUrEaAVoOoWVtZjSiQW1XJDriwncSqXWnR6VosyeVed9qucp7GjingYKbgNjmT8ejMv5vR9ebO3xuuNJNZbUnODgLB_9ramMzab8OYfzYcmOBCP7pc7KEm-BiD7Z4MGJi5IDMXZI4F5Yt3f_915A-NZODDAZgvj3LSlDo7a1WbbjsMyf5OmaX_YTPydo-sY_LhiSmhEnJ-cEne7_cdeoN3wUVz-30OCEwxISsl_gDhabou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201323998</pqid></control><display><type>article</type><title>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nakamura, Yuki ; Koizumi, Ryota ; Shui, Guanghou ; Shimojima, Mie ; Wenk, Markus R ; Ito, Toshiro ; Ohta, Hiroyuki</creator><creatorcontrib>Nakamura, Yuki ; Koizumi, Ryota ; Shui, Guanghou ; Shimojima, Mie ; Wenk, Markus R ; Ito, Toshiro ; Ohta, Hiroyuki</creatorcontrib><description>Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0907173106</identifier><identifier>PMID: 19923426</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis - cytology ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological Sciences ; Biosynthesis ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - metabolism ; enzyme activity ; Eukaryotes ; Flowers & plants ; Galactolipids ; Gene expression ; Gene Expression Regulation, Plant - drug effects ; Genes, Plant - genetics ; hydrolases ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipid Metabolism - genetics ; Lipids ; lipins ; Membrane lipids ; Membrane Lipids - metabolism ; Metabolism ; Models, Biological ; mutants ; Mutation - genetics ; nutrient deficiencies ; Phenotype ; Phenotypes ; Phosphates ; Phosphates - deficiency ; Phosphates - pharmacology ; Phosphatidate Phosphatase - metabolism ; phosphatidate phosphohydrolase 1 ; phosphatidate phosphohydrolase 2 ; phosphorus ; Plants ; Renovations ; Signal transduction ; Signal Transduction - drug effects ; Starvation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-12, Vol.106 (49), p.20978-20983</ispartof><rights>Copyright National Academy of Sciences Dec 8, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</citedby><cites>FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536107$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536107$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19923426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Yuki</creatorcontrib><creatorcontrib>Koizumi, Ryota</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Shimojima, Mie</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Ito, Toshiro</creatorcontrib><creatorcontrib>Ohta, Hiroyuki</creatorcontrib><title>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.</description><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>enzyme activity</subject><subject>Eukaryotes</subject><subject>Flowers & plants</subject><subject>Galactolipids</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes, Plant - genetics</subject><subject>hydrolases</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>lipins</subject><subject>Membrane lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>mutants</subject><subject>Mutation - genetics</subject><subject>nutrient deficiencies</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphates</subject><subject>Phosphates - deficiency</subject><subject>Phosphates - pharmacology</subject><subject>Phosphatidate Phosphatase - metabolism</subject><subject>phosphatidate phosphohydrolase 1</subject><subject>phosphatidate phosphohydrolase 2</subject><subject>phosphorus</subject><subject>Plants</subject><subject>Renovations</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Starvation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotuFMyfA6o1D2rGd2PGlUlXxJVXiAD1bs4nTeMnGwfa27H-P01114cRpDvOb9-bpEfKGwTkDJS6mEeM5aFBMCQbyGVkw0KyQpYbnZAHAVVGXvDwhpzGuAUBXNbwkJ0xrLkouF8RfBVy51k_RRTq4yY2RbmzrMFlqtz8x7HxyDZ0w9Q-4o757hNrMJFz5wcUNxbGljZ8sbYLLLA7Djj641NOp93HqZ6WYMNxjcn58RV50OET7-jCX5PbTxx_XX4qbb5-_Xl_dFE0l61Rwptuy7TSreM0FQN3IKkdUrEaAVoOoWVtZjSiQW1XJDriwncSqXWnR6VosyeVed9qucp7GjingYKbgNjmT8ejMv5vR9ebO3xuuNJNZbUnODgLB_9ramMzab8OYfzYcmOBCP7pc7KEm-BiD7Z4MGJi5IDMXZI4F5Yt3f_915A-NZODDAZgvj3LSlDo7a1WbbjsMyf5OmaX_YTPydo-sY_LhiSmhEnJ-cEne7_cdeoN3wUVz-30OCEwxISsl_gDhabou</recordid><startdate>20091208</startdate><enddate>20091208</enddate><creator>Nakamura, Yuki</creator><creator>Koizumi, Ryota</creator><creator>Shui, Guanghou</creator><creator>Shimojima, Mie</creator><creator>Wenk, Markus R</creator><creator>Ito, Toshiro</creator><creator>Ohta, Hiroyuki</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20091208</creationdate><title>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</title><author>Nakamura, Yuki ; Koizumi, Ryota ; Shui, Guanghou ; Shimojima, Mie ; Wenk, Markus R ; Ito, Toshiro ; Ohta, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>enzyme activity</topic><topic>Eukaryotes</topic><topic>Flowers & plants</topic><topic>Galactolipids</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes, Plant - genetics</topic><topic>hydrolases</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>lipins</topic><topic>Membrane lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>mutants</topic><topic>Mutation - genetics</topic><topic>nutrient deficiencies</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphates</topic><topic>Phosphates - deficiency</topic><topic>Phosphates - pharmacology</topic><topic>Phosphatidate Phosphatase - metabolism</topic><topic>phosphatidate phosphohydrolase 1</topic><topic>phosphatidate phosphohydrolase 2</topic><topic>phosphorus</topic><topic>Plants</topic><topic>Renovations</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Starvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Yuki</creatorcontrib><creatorcontrib>Koizumi, Ryota</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Shimojima, Mie</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Ito, Toshiro</creatorcontrib><creatorcontrib>Ohta, Hiroyuki</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Yuki</au><au>Koizumi, Ryota</au><au>Shui, Guanghou</au><au>Shimojima, Mie</au><au>Wenk, Markus R</au><au>Ito, Toshiro</au><au>Ohta, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-12-08</date><risdate>2009</risdate><volume>106</volume><issue>49</issue><spage>20978</spage><epage>20983</epage><pages>20978-20983</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19923426</pmid><doi>10.1073/pnas.0907173106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-12, Vol.106 (49), p.20978-20983 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201301713657 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Arabidopsis - cytology Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological Sciences Biosynthesis Endoplasmic Reticulum - drug effects Endoplasmic Reticulum - metabolism enzyme activity Eukaryotes Flowers & plants Galactolipids Gene expression Gene Expression Regulation, Plant - drug effects Genes, Plant - genetics hydrolases Lipid metabolism Lipid Metabolism - drug effects Lipid Metabolism - genetics Lipids lipins Membrane lipids Membrane Lipids - metabolism Metabolism Models, Biological mutants Mutation - genetics nutrient deficiencies Phenotype Phenotypes Phosphates Phosphates - deficiency Phosphates - pharmacology Phosphatidate Phosphatase - metabolism phosphatidate phosphohydrolase 1 phosphatidate phosphohydrolase 2 phosphorus Plants Renovations Signal transduction Signal Transduction - drug effects Starvation |
title | Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20lipins%20mediate%20eukaryotic%20pathway%20of%20lipid%20metabolism%20and%20cope%20critically%20with%20phosphate%20starvation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nakamura,%20Yuki&rft.date=2009-12-08&rft.volume=106&rft.issue=49&rft.spage=20978&rft.epage=20983&rft.pages=20978-20983&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0907173106&rft_dat=%3Cjstor_fao_a%3E40536107%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201323998&rft_id=info:pmid/19923426&rft_jstor_id=40536107&rfr_iscdi=true |