Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation

Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-12, Vol.106 (49), p.20978-20983
Hauptverfasser: Nakamura, Yuki, Koizumi, Ryota, Shui, Guanghou, Shimojima, Mie, Wenk, Markus R, Ito, Toshiro, Ohta, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20983
container_issue 49
container_start_page 20978
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Nakamura, Yuki
Koizumi, Ryota
Shui, Guanghou
Shimojima, Mie
Wenk, Markus R
Ito, Toshiro
Ohta, Hiroyuki
description Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.
doi_str_mv 10.1073/pnas.0907173106
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301713657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536107</jstor_id><sourcerecordid>40536107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotuFMyfA6o1D2rGd2PGlUlXxJVXiAD1bs4nTeMnGwfa27H-P01114cRpDvOb9-bpEfKGwTkDJS6mEeM5aFBMCQbyGVkw0KyQpYbnZAHAVVGXvDwhpzGuAUBXNbwkJ0xrLkouF8RfBVy51k_RRTq4yY2RbmzrMFlqtz8x7HxyDZ0w9Q-4o757hNrMJFz5wcUNxbGljZ8sbYLLLA7Djj641NOp93HqZ6WYMNxjcn58RV50OET7-jCX5PbTxx_XX4qbb5-_Xl_dFE0l61Rwptuy7TSreM0FQN3IKkdUrEaAVoOoWVtZjSiQW1XJDriwncSqXWnR6VosyeVed9qucp7GjingYKbgNjmT8ejMv5vR9ebO3xuuNJNZbUnODgLB_9ramMzab8OYfzYcmOBCP7pc7KEm-BiD7Z4MGJi5IDMXZI4F5Yt3f_915A-NZODDAZgvj3LSlDo7a1WbbjsMyf5OmaX_YTPydo-sY_LhiSmhEnJ-cEne7_cdeoN3wUVz-30OCEwxISsl_gDhabou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201323998</pqid></control><display><type>article</type><title>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nakamura, Yuki ; Koizumi, Ryota ; Shui, Guanghou ; Shimojima, Mie ; Wenk, Markus R ; Ito, Toshiro ; Ohta, Hiroyuki</creator><creatorcontrib>Nakamura, Yuki ; Koizumi, Ryota ; Shui, Guanghou ; Shimojima, Mie ; Wenk, Markus R ; Ito, Toshiro ; Ohta, Hiroyuki</creatorcontrib><description>Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0907173106</identifier><identifier>PMID: 19923426</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis - cytology ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological Sciences ; Biosynthesis ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - metabolism ; enzyme activity ; Eukaryotes ; Flowers &amp; plants ; Galactolipids ; Gene expression ; Gene Expression Regulation, Plant - drug effects ; Genes, Plant - genetics ; hydrolases ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipid Metabolism - genetics ; Lipids ; lipins ; Membrane lipids ; Membrane Lipids - metabolism ; Metabolism ; Models, Biological ; mutants ; Mutation - genetics ; nutrient deficiencies ; Phenotype ; Phenotypes ; Phosphates ; Phosphates - deficiency ; Phosphates - pharmacology ; Phosphatidate Phosphatase - metabolism ; phosphatidate phosphohydrolase 1 ; phosphatidate phosphohydrolase 2 ; phosphorus ; Plants ; Renovations ; Signal transduction ; Signal Transduction - drug effects ; Starvation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-12, Vol.106 (49), p.20978-20983</ispartof><rights>Copyright National Academy of Sciences Dec 8, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</citedby><cites>FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536107$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536107$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19923426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Yuki</creatorcontrib><creatorcontrib>Koizumi, Ryota</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Shimojima, Mie</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Ito, Toshiro</creatorcontrib><creatorcontrib>Ohta, Hiroyuki</creatorcontrib><title>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.</description><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>enzyme activity</subject><subject>Eukaryotes</subject><subject>Flowers &amp; plants</subject><subject>Galactolipids</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes, Plant - genetics</subject><subject>hydrolases</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>lipins</subject><subject>Membrane lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>mutants</subject><subject>Mutation - genetics</subject><subject>nutrient deficiencies</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphates</subject><subject>Phosphates - deficiency</subject><subject>Phosphates - pharmacology</subject><subject>Phosphatidate Phosphatase - metabolism</subject><subject>phosphatidate phosphohydrolase 1</subject><subject>phosphatidate phosphohydrolase 2</subject><subject>phosphorus</subject><subject>Plants</subject><subject>Renovations</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Starvation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotuFMyfA6o1D2rGd2PGlUlXxJVXiAD1bs4nTeMnGwfa27H-P01114cRpDvOb9-bpEfKGwTkDJS6mEeM5aFBMCQbyGVkw0KyQpYbnZAHAVVGXvDwhpzGuAUBXNbwkJ0xrLkouF8RfBVy51k_RRTq4yY2RbmzrMFlqtz8x7HxyDZ0w9Q-4o757hNrMJFz5wcUNxbGljZ8sbYLLLA7Djj641NOp93HqZ6WYMNxjcn58RV50OET7-jCX5PbTxx_XX4qbb5-_Xl_dFE0l61Rwptuy7TSreM0FQN3IKkdUrEaAVoOoWVtZjSiQW1XJDriwncSqXWnR6VosyeVed9qucp7GjingYKbgNjmT8ejMv5vR9ebO3xuuNJNZbUnODgLB_9ramMzab8OYfzYcmOBCP7pc7KEm-BiD7Z4MGJi5IDMXZI4F5Yt3f_915A-NZODDAZgvj3LSlDo7a1WbbjsMyf5OmaX_YTPydo-sY_LhiSmhEnJ-cEne7_cdeoN3wUVz-30OCEwxISsl_gDhabou</recordid><startdate>20091208</startdate><enddate>20091208</enddate><creator>Nakamura, Yuki</creator><creator>Koizumi, Ryota</creator><creator>Shui, Guanghou</creator><creator>Shimojima, Mie</creator><creator>Wenk, Markus R</creator><creator>Ito, Toshiro</creator><creator>Ohta, Hiroyuki</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20091208</creationdate><title>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</title><author>Nakamura, Yuki ; Koizumi, Ryota ; Shui, Guanghou ; Shimojima, Mie ; Wenk, Markus R ; Ito, Toshiro ; Ohta, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-219d4df9152823008c65173718a00d90381d5e9aa3a2e756f023ef6a5db93f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>enzyme activity</topic><topic>Eukaryotes</topic><topic>Flowers &amp; plants</topic><topic>Galactolipids</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes, Plant - genetics</topic><topic>hydrolases</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>lipins</topic><topic>Membrane lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>mutants</topic><topic>Mutation - genetics</topic><topic>nutrient deficiencies</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphates</topic><topic>Phosphates - deficiency</topic><topic>Phosphates - pharmacology</topic><topic>Phosphatidate Phosphatase - metabolism</topic><topic>phosphatidate phosphohydrolase 1</topic><topic>phosphatidate phosphohydrolase 2</topic><topic>phosphorus</topic><topic>Plants</topic><topic>Renovations</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Starvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Yuki</creatorcontrib><creatorcontrib>Koizumi, Ryota</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Shimojima, Mie</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Ito, Toshiro</creatorcontrib><creatorcontrib>Ohta, Hiroyuki</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Yuki</au><au>Koizumi, Ryota</au><au>Shui, Guanghou</au><au>Shimojima, Mie</au><au>Wenk, Markus R</au><au>Ito, Toshiro</au><au>Ohta, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-12-08</date><risdate>2009</risdate><volume>106</volume><issue>49</issue><spage>20978</spage><epage>20983</epage><pages>20978-20983</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDζ1 and PLDζ2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19923426</pmid><doi>10.1073/pnas.0907173106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-12, Vol.106 (49), p.20978-20983
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201301713657
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Arabidopsis - cytology
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological Sciences
Biosynthesis
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - metabolism
enzyme activity
Eukaryotes
Flowers & plants
Galactolipids
Gene expression
Gene Expression Regulation, Plant - drug effects
Genes, Plant - genetics
hydrolases
Lipid metabolism
Lipid Metabolism - drug effects
Lipid Metabolism - genetics
Lipids
lipins
Membrane lipids
Membrane Lipids - metabolism
Metabolism
Models, Biological
mutants
Mutation - genetics
nutrient deficiencies
Phenotype
Phenotypes
Phosphates
Phosphates - deficiency
Phosphates - pharmacology
Phosphatidate Phosphatase - metabolism
phosphatidate phosphohydrolase 1
phosphatidate phosphohydrolase 2
phosphorus
Plants
Renovations
Signal transduction
Signal Transduction - drug effects
Starvation
title Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20lipins%20mediate%20eukaryotic%20pathway%20of%20lipid%20metabolism%20and%20cope%20critically%20with%20phosphate%20starvation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nakamura,%20Yuki&rft.date=2009-12-08&rft.volume=106&rft.issue=49&rft.spage=20978&rft.epage=20983&rft.pages=20978-20983&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0907173106&rft_dat=%3Cjstor_fao_a%3E40536107%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201323998&rft_id=info:pmid/19923426&rft_jstor_id=40536107&rfr_iscdi=true