Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus
Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO₂, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose ma...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2008-11, Vol.74 (21), p.6720-6729 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6729 |
---|---|
container_issue | 21 |
container_start_page | 6720 |
container_title | Applied and Environmental Microbiology |
container_volume | 74 |
creator | van de Werken, Harmen J.G Verhaart, Marcel R.A VanFossen, Amy L Willquist, Karin Lewis, Derrick L Nichols, Jason D Goorissen, Heleen P Mongodin, Emmanuel F Nelson, Karen E van Niel, Ed W.J Stams, Alfons J.M Ward, Donald E de Vos, Willem M van der Oost, John Kelly, Robert M Kengen, Servé W.M |
description | Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO₂, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium. |
doi_str_mv | 10.1128/AEM.00968-08 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301576904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21500269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-42f8ceabf9ce8c218993ca828e18e9a9116aa904f483dbf4681b83e4981db0d93</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYsvCjTNESHCii7_q2ByQlqqwSEUc2L1wGU0cp_EqiYudUPrvcbaFZblwsC2Pn3ntGb9Z9pSSM0qZenO--nxGiJZqTtS9bEaJVvMF5_J-NkthPWdMkJPsUYzXhBBBpHqYnVBVFJIwPcu-Xeyr4De2950zMfd1PjQ2X_0cgu1su88vGxs6v21c60z-Hs1ggxu7fIlt5Yxt27H10YVxO_iQRzSmweDb_eDMGB9nD2pso31yXE-zqw-ry-XFfP3l46fl-XpupBLDXLBaGYtlrY1VhlGlNTeomLJUWY2aUomoiaiF4lVZC6loqbgVWtGqJJXmp9nbg-4OUx2uTxP0GIyL4NFB68qAYQ-7MUDfTst2LCPwghS6SMnrQ3Lc2RSHbXDdRN9kjts0yjQgWhDcMG5LCagXaVeVBZRElECR09pUFaFKJrl3B7mk1dnK2H4I2N5RvXvSuwY2_gewRSGl4kng1VEg-O-jjQN0Lk6Nxt76MYLUBRViof4LMroghMmpPS_-Aa_9GPr0I8DIQidC0wS9PkAm-BiDrf88mRKYbAbJZnBjMyDT5c_-LvMWPvoqAS-PAEaDbR2wn_7jN8eSBuG0uH1c4zbNzgULGDtA20EhUgkgC0YS9PwA1egBNyEJXX1lhHJCU9eSNfgvtpvy1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205969391</pqid></control><display><type>article</type><title>Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>van de Werken, Harmen J.G ; Verhaart, Marcel R.A ; VanFossen, Amy L ; Willquist, Karin ; Lewis, Derrick L ; Nichols, Jason D ; Goorissen, Heleen P ; Mongodin, Emmanuel F ; Nelson, Karen E ; van Niel, Ed W.J ; Stams, Alfons J.M ; Ward, Donald E ; de Vos, Willem M ; van der Oost, John ; Kelly, Robert M ; Kengen, Servé W.M</creator><creatorcontrib>van de Werken, Harmen J.G ; Verhaart, Marcel R.A ; VanFossen, Amy L ; Willquist, Karin ; Lewis, Derrick L ; Nichols, Jason D ; Goorissen, Heleen P ; Mongodin, Emmanuel F ; Nelson, Karen E ; van Niel, Ed W.J ; Stams, Alfons J.M ; Ward, Donald E ; de Vos, Willem M ; van der Oost, John ; Kelly, Robert M ; Kengen, Servé W.M</creatorcontrib><description>Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO₂, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00968-08</identifier><identifier>PMID: 18776029</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>ABC transporter ; ABC transporters ; anaerobic-bacteria ; bacillus-subtilis ; Bacteria ; Bacterial Proteins - genetics ; Biological and medical sciences ; caldocellum-saccharolyticum ; Carbohydrate Metabolism - genetics ; Chromosomes ; dna ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Engineering and Technology ; Enzymes - genetics ; expression ; Fundamental and applied biological sciences. Psychology ; gene ; Gene Expression Profiling ; genome annotation extreme thermophile hydrogen production Caldicellulosiruptor saccharolyticus ; Genome, Bacterial ; Genomics ; Glucose ; Gram-positive bacteria ; Gram-Positive Bacteria - genetics ; identification ; Industrial Biotechnology ; Industriell bioteknik ; Metabolic Networks and Pathways - genetics ; Microbiology ; Molecular Sequence Data ; Physiology and Biotechnology ; Proteins ; sequence ; Sequence Analysis, DNA ; Teknik ; thermotoga-maritima</subject><ispartof>Applied and Environmental Microbiology, 2008-11, Vol.74 (21), p.6720-6729</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Nov 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-42f8ceabf9ce8c218993ca828e18e9a9116aa904f483dbf4681b83e4981db0d93</citedby><cites>FETCH-LOGICAL-c684t-42f8ceabf9ce8c218993ca828e18e9a9116aa904f483dbf4681b83e4981db0d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576683/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576683/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20830317$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18776029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/1260514$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Werken, Harmen J.G</creatorcontrib><creatorcontrib>Verhaart, Marcel R.A</creatorcontrib><creatorcontrib>VanFossen, Amy L</creatorcontrib><creatorcontrib>Willquist, Karin</creatorcontrib><creatorcontrib>Lewis, Derrick L</creatorcontrib><creatorcontrib>Nichols, Jason D</creatorcontrib><creatorcontrib>Goorissen, Heleen P</creatorcontrib><creatorcontrib>Mongodin, Emmanuel F</creatorcontrib><creatorcontrib>Nelson, Karen E</creatorcontrib><creatorcontrib>van Niel, Ed W.J</creatorcontrib><creatorcontrib>Stams, Alfons J.M</creatorcontrib><creatorcontrib>Ward, Donald E</creatorcontrib><creatorcontrib>de Vos, Willem M</creatorcontrib><creatorcontrib>van der Oost, John</creatorcontrib><creatorcontrib>Kelly, Robert M</creatorcontrib><creatorcontrib>Kengen, Servé W.M</creatorcontrib><title>Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO₂, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.</description><subject>ABC transporter</subject><subject>ABC transporters</subject><subject>anaerobic-bacteria</subject><subject>bacillus-subtilis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological and medical sciences</subject><subject>caldocellum-saccharolyticum</subject><subject>Carbohydrate Metabolism - genetics</subject><subject>Chromosomes</subject><subject>dna</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Engineering and Technology</subject><subject>Enzymes - genetics</subject><subject>expression</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene</subject><subject>Gene Expression Profiling</subject><subject>genome annotation extreme thermophile hydrogen production Caldicellulosiruptor saccharolyticus</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Gram-positive bacteria</subject><subject>Gram-Positive Bacteria - genetics</subject><subject>identification</subject><subject>Industrial Biotechnology</subject><subject>Industriell bioteknik</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Physiology and Biotechnology</subject><subject>Proteins</subject><subject>sequence</subject><subject>Sequence Analysis, DNA</subject><subject>Teknik</subject><subject>thermotoga-maritima</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkk2P0zAQhiMEYsvCjTNESHCii7_q2ByQlqqwSEUc2L1wGU0cp_EqiYudUPrvcbaFZblwsC2Pn3ntGb9Z9pSSM0qZenO--nxGiJZqTtS9bEaJVvMF5_J-NkthPWdMkJPsUYzXhBBBpHqYnVBVFJIwPcu-Xeyr4De2950zMfd1PjQ2X_0cgu1su88vGxs6v21c60z-Hs1ggxu7fIlt5Yxt27H10YVxO_iQRzSmweDb_eDMGB9nD2pso31yXE-zqw-ry-XFfP3l46fl-XpupBLDXLBaGYtlrY1VhlGlNTeomLJUWY2aUomoiaiF4lVZC6loqbgVWtGqJJXmp9nbg-4OUx2uTxP0GIyL4NFB68qAYQ-7MUDfTst2LCPwghS6SMnrQ3Lc2RSHbXDdRN9kjts0yjQgWhDcMG5LCagXaVeVBZRElECR09pUFaFKJrl3B7mk1dnK2H4I2N5RvXvSuwY2_gewRSGl4kng1VEg-O-jjQN0Lk6Nxt76MYLUBRViof4LMroghMmpPS_-Aa_9GPr0I8DIQidC0wS9PkAm-BiDrf88mRKYbAbJZnBjMyDT5c_-LvMWPvoqAS-PAEaDbR2wn_7jN8eSBuG0uH1c4zbNzgULGDtA20EhUgkgC0YS9PwA1egBNyEJXX1lhHJCU9eSNfgvtpvy1g</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>van de Werken, Harmen J.G</creator><creator>Verhaart, Marcel R.A</creator><creator>VanFossen, Amy L</creator><creator>Willquist, Karin</creator><creator>Lewis, Derrick L</creator><creator>Nichols, Jason D</creator><creator>Goorissen, Heleen P</creator><creator>Mongodin, Emmanuel F</creator><creator>Nelson, Karen E</creator><creator>van Niel, Ed W.J</creator><creator>Stams, Alfons J.M</creator><creator>Ward, Donald E</creator><creator>de Vos, Willem M</creator><creator>van der Oost, John</creator><creator>Kelly, Robert M</creator><creator>Kengen, Servé W.M</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>QVL</scope></search><sort><creationdate>20081101</creationdate><title>Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus</title><author>van de Werken, Harmen J.G ; Verhaart, Marcel R.A ; VanFossen, Amy L ; Willquist, Karin ; Lewis, Derrick L ; Nichols, Jason D ; Goorissen, Heleen P ; Mongodin, Emmanuel F ; Nelson, Karen E ; van Niel, Ed W.J ; Stams, Alfons J.M ; Ward, Donald E ; de Vos, Willem M ; van der Oost, John ; Kelly, Robert M ; Kengen, Servé W.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-42f8ceabf9ce8c218993ca828e18e9a9116aa904f483dbf4681b83e4981db0d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ABC transporter</topic><topic>ABC transporters</topic><topic>anaerobic-bacteria</topic><topic>bacillus-subtilis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological and medical sciences</topic><topic>caldocellum-saccharolyticum</topic><topic>Carbohydrate Metabolism - genetics</topic><topic>Chromosomes</topic><topic>dna</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Engineering and Technology</topic><topic>Enzymes - genetics</topic><topic>expression</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene</topic><topic>Gene Expression Profiling</topic><topic>genome annotation extreme thermophile hydrogen production Caldicellulosiruptor saccharolyticus</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Gram-positive bacteria</topic><topic>Gram-Positive Bacteria - genetics</topic><topic>identification</topic><topic>Industrial Biotechnology</topic><topic>Industriell bioteknik</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Physiology and Biotechnology</topic><topic>Proteins</topic><topic>sequence</topic><topic>Sequence Analysis, DNA</topic><topic>Teknik</topic><topic>thermotoga-maritima</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Werken, Harmen J.G</creatorcontrib><creatorcontrib>Verhaart, Marcel R.A</creatorcontrib><creatorcontrib>VanFossen, Amy L</creatorcontrib><creatorcontrib>Willquist, Karin</creatorcontrib><creatorcontrib>Lewis, Derrick L</creatorcontrib><creatorcontrib>Nichols, Jason D</creatorcontrib><creatorcontrib>Goorissen, Heleen P</creatorcontrib><creatorcontrib>Mongodin, Emmanuel F</creatorcontrib><creatorcontrib>Nelson, Karen E</creatorcontrib><creatorcontrib>van Niel, Ed W.J</creatorcontrib><creatorcontrib>Stams, Alfons J.M</creatorcontrib><creatorcontrib>Ward, Donald E</creatorcontrib><creatorcontrib>de Vos, Willem M</creatorcontrib><creatorcontrib>van der Oost, John</creatorcontrib><creatorcontrib>Kelly, Robert M</creatorcontrib><creatorcontrib>Kengen, Servé W.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>NARCIS:Publications</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Werken, Harmen J.G</au><au>Verhaart, Marcel R.A</au><au>VanFossen, Amy L</au><au>Willquist, Karin</au><au>Lewis, Derrick L</au><au>Nichols, Jason D</au><au>Goorissen, Heleen P</au><au>Mongodin, Emmanuel F</au><au>Nelson, Karen E</au><au>van Niel, Ed W.J</au><au>Stams, Alfons J.M</au><au>Ward, Donald E</au><au>de Vos, Willem M</au><au>van der Oost, John</au><au>Kelly, Robert M</au><au>Kengen, Servé W.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>74</volume><issue>21</issue><spage>6720</spage><epage>6729</epage><pages>6720-6729</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO₂, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18776029</pmid><doi>10.1128/AEM.00968-08</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2008-11, Vol.74 (21), p.6720-6729 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_fao_agris_US201301576904 |
source | American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | ABC transporter ABC transporters anaerobic-bacteria bacillus-subtilis Bacteria Bacterial Proteins - genetics Biological and medical sciences caldocellum-saccharolyticum Carbohydrate Metabolism - genetics Chromosomes dna DNA, Bacterial - chemistry DNA, Bacterial - genetics Engineering and Technology Enzymes - genetics expression Fundamental and applied biological sciences. Psychology gene Gene Expression Profiling genome annotation extreme thermophile hydrogen production Caldicellulosiruptor saccharolyticus Genome, Bacterial Genomics Glucose Gram-positive bacteria Gram-Positive Bacteria - genetics identification Industrial Biotechnology Industriell bioteknik Metabolic Networks and Pathways - genetics Microbiology Molecular Sequence Data Physiology and Biotechnology Proteins sequence Sequence Analysis, DNA Teknik thermotoga-maritima |
title | Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenomics%20of%20the%20Extremely%20Thermophilic%20Bacterium%20Caldicellulosiruptor%20saccharolyticus&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=van%20de%20Werken,%20Harmen%20J.G&rft.date=2008-11-01&rft.volume=74&rft.issue=21&rft.spage=6720&rft.epage=6729&rft.pages=6720-6729&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00968-08&rft_dat=%3Cproquest_fao_a%3E21500269%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205969391&rft_id=info:pmid/18776029&rfr_iscdi=true |