Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase
In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2008-12, Vol.74 (24), p.7660-7668 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7668 |
---|---|
container_issue | 24 |
container_start_page | 7660 |
container_title | Applied and Environmental Microbiology |
container_volume | 74 |
creator | Mordukhova, Elena A Lee, Hee-Soon Pan, Jae-Gu |
description | In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses. |
doi_str_mv | 10.1128/AEM.00654-08 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301569676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1613503431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</originalsourceid><addsrcrecordid>eNpdkU1v1DAURSMEokNhxxoiJFiR8mzHXxukURlopSIWbdeW4zgTV048tZNBs-Sf42FGLbB6lt7x0X26RfEawRlCWHxarr6fATBaVyCeFAsEUlSUEPa0WABIWWFcw0nxIqU7AKiBiefFCRKSCxB0Ufy6HDYxbG1b3vQ2DiFNunHeTbtSj225NHZyJg-X98HbqEdjy9CVq2Qy7kzvdGmCd-U2P764aM2UVatt8PPkwrhHL0K2ZnbMH6vr2Rg37vyUTanLvmRfFs867ZN9dZynxe3X1c35RXX149vl-fKqMhSjqSLSUGq0poTTtjGctRgT3koOdWsEry1lDUfW6g63QjBEhKRGWIIbSiRpODktPh-8m7kZbGvsmEN4tYlu0HGngnbq383oerUOW4UZcCQgCz4cBTHczzZNanDJWO_1aMOcFEa1BMloBt_9B96FOY75OIWBSo5rzjL08QCZGFKKtntIgkDti1W5WPWnWAUi42_-Tv8IH5vMwPsjoJPRvttX5dIDh0FyjhF_DNe7df8zN6Z0GpS2g-K1wrXijO1PfXuAOh2UXscsur3GgAggyiTL8X8DFGnBsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205972476</pqid></control><display><type>article</type><title>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mordukhova, Elena A ; Lee, Hee-Soon ; Pan, Jae-Gu</creator><creatorcontrib>Mordukhova, Elena A ; Lee, Hee-Soon ; Pan, Jae-Gu</creatorcontrib><description>In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00654-08</identifier><identifier>PMID: 18978085</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acetic acid ; Acetic Acid - pharmacology ; Amino Acid Substitution - genetics ; Amino acids ; Anti-Bacterial Agents - pharmacology ; Bacillaceae - enzymology ; Bacillaceae - genetics ; Biological and medical sciences ; Biosynthetic Pathways ; Biotechnology ; Cloning ; DNA Mutational Analysis ; DNA, Bacterial - genetics ; Drug Tolerance ; E coli ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli - physiology ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genes ; Heat-Shock Response ; High temperature ; Homoserine O-Succinyltransferase - genetics ; Homoserine O-Succinyltransferase - metabolism ; Methods. Procedures. Technologies ; Microbiology ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Mutation, Missense ; Physiology and Biotechnology ; Protein engineering ; Proteins</subject><ispartof>Applied and Environmental Microbiology, 2008-12, Vol.74 (24), p.7660-7668</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Dec 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</citedby><cites>FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607180/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607180/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20977217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18978085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordukhova, Elena A</creatorcontrib><creatorcontrib>Lee, Hee-Soon</creatorcontrib><creatorcontrib>Pan, Jae-Gu</creatorcontrib><title>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.</description><subject>Acetic acid</subject><subject>Acetic Acid - pharmacology</subject><subject>Amino Acid Substitution - genetics</subject><subject>Amino acids</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacillaceae - enzymology</subject><subject>Bacillaceae - genetics</subject><subject>Biological and medical sciences</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnology</subject><subject>Cloning</subject><subject>DNA Mutational Analysis</subject><subject>DNA, Bacterial - genetics</subject><subject>Drug Tolerance</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Heat-Shock Response</subject><subject>High temperature</subject><subject>Homoserine O-Succinyltransferase - genetics</subject><subject>Homoserine O-Succinyltransferase - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Physiology and Biotechnology</subject><subject>Protein engineering</subject><subject>Proteins</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAURSMEokNhxxoiJFiR8mzHXxukURlopSIWbdeW4zgTV048tZNBs-Sf42FGLbB6lt7x0X26RfEawRlCWHxarr6fATBaVyCeFAsEUlSUEPa0WABIWWFcw0nxIqU7AKiBiefFCRKSCxB0Ufy6HDYxbG1b3vQ2DiFNunHeTbtSj225NHZyJg-X98HbqEdjy9CVq2Qy7kzvdGmCd-U2P764aM2UVatt8PPkwrhHL0K2ZnbMH6vr2Rg37vyUTanLvmRfFs867ZN9dZynxe3X1c35RXX149vl-fKqMhSjqSLSUGq0poTTtjGctRgT3koOdWsEry1lDUfW6g63QjBEhKRGWIIbSiRpODktPh-8m7kZbGvsmEN4tYlu0HGngnbq383oerUOW4UZcCQgCz4cBTHczzZNanDJWO_1aMOcFEa1BMloBt_9B96FOY75OIWBSo5rzjL08QCZGFKKtntIgkDti1W5WPWnWAUi42_-Tv8IH5vMwPsjoJPRvttX5dIDh0FyjhF_DNe7df8zN6Z0GpS2g-K1wrXijO1PfXuAOh2UXscsur3GgAggyiTL8X8DFGnBsQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Mordukhova, Elena A</creator><creator>Lee, Hee-Soon</creator><creator>Pan, Jae-Gu</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</title><author>Mordukhova, Elena A ; Lee, Hee-Soon ; Pan, Jae-Gu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - pharmacology</topic><topic>Amino Acid Substitution - genetics</topic><topic>Amino acids</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacillaceae - enzymology</topic><topic>Bacillaceae - genetics</topic><topic>Biological and medical sciences</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnology</topic><topic>Cloning</topic><topic>DNA Mutational Analysis</topic><topic>DNA, Bacterial - genetics</topic><topic>Drug Tolerance</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Heat-Shock Response</topic><topic>High temperature</topic><topic>Homoserine O-Succinyltransferase - genetics</topic><topic>Homoserine O-Succinyltransferase - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Physiology and Biotechnology</topic><topic>Protein engineering</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordukhova, Elena A</creatorcontrib><creatorcontrib>Lee, Hee-Soon</creatorcontrib><creatorcontrib>Pan, Jae-Gu</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordukhova, Elena A</au><au>Lee, Hee-Soon</au><au>Pan, Jae-Gu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>74</volume><issue>24</issue><spage>7660</spage><epage>7668</epage><pages>7660-7668</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18978085</pmid><doi>10.1128/AEM.00654-08</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2008-12, Vol.74 (24), p.7660-7668 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_fao_agris_US201301569676 |
source | American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetic acid Acetic Acid - pharmacology Amino Acid Substitution - genetics Amino acids Anti-Bacterial Agents - pharmacology Bacillaceae - enzymology Bacillaceae - genetics Biological and medical sciences Biosynthetic Pathways Biotechnology Cloning DNA Mutational Analysis DNA, Bacterial - genetics Drug Tolerance E coli Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli - physiology Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fundamental and applied biological sciences. Psychology Genes Heat-Shock Response High temperature Homoserine O-Succinyltransferase - genetics Homoserine O-Succinyltransferase - metabolism Methods. Procedures. Technologies Microbiology Mutagenesis Mutagenesis, Site-Directed Mutation Mutation, Missense Physiology and Biotechnology Protein engineering Proteins |
title | Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Thermostability%20and%20Acetic%20Acid%20Tolerance%20of%20Escherichia%20coli%20via%20Directed%20Evolution%20of%20Homoserine%20o-Succinyltransferase&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Mordukhova,%20Elena%20A&rft.date=2008-12-01&rft.volume=74&rft.issue=24&rft.spage=7660&rft.epage=7668&rft.pages=7660-7668&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00654-08&rft_dat=%3Cproquest_fao_a%3E1613503431%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205972476&rft_id=info:pmid/18978085&rfr_iscdi=true |