Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase

In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2008-12, Vol.74 (24), p.7660-7668
Hauptverfasser: Mordukhova, Elena A, Lee, Hee-Soon, Pan, Jae-Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7668
container_issue 24
container_start_page 7660
container_title Applied and Environmental Microbiology
container_volume 74
creator Mordukhova, Elena A
Lee, Hee-Soon
Pan, Jae-Gu
description In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.
doi_str_mv 10.1128/AEM.00654-08
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201301569676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1613503431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</originalsourceid><addsrcrecordid>eNpdkU1v1DAURSMEokNhxxoiJFiR8mzHXxukURlopSIWbdeW4zgTV048tZNBs-Sf42FGLbB6lt7x0X26RfEawRlCWHxarr6fATBaVyCeFAsEUlSUEPa0WABIWWFcw0nxIqU7AKiBiefFCRKSCxB0Ufy6HDYxbG1b3vQ2DiFNunHeTbtSj225NHZyJg-X98HbqEdjy9CVq2Qy7kzvdGmCd-U2P764aM2UVatt8PPkwrhHL0K2ZnbMH6vr2Rg37vyUTanLvmRfFs867ZN9dZynxe3X1c35RXX149vl-fKqMhSjqSLSUGq0poTTtjGctRgT3koOdWsEry1lDUfW6g63QjBEhKRGWIIbSiRpODktPh-8m7kZbGvsmEN4tYlu0HGngnbq383oerUOW4UZcCQgCz4cBTHczzZNanDJWO_1aMOcFEa1BMloBt_9B96FOY75OIWBSo5rzjL08QCZGFKKtntIgkDti1W5WPWnWAUi42_-Tv8IH5vMwPsjoJPRvttX5dIDh0FyjhF_DNe7df8zN6Z0GpS2g-K1wrXijO1PfXuAOh2UXscsur3GgAggyiTL8X8DFGnBsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205972476</pqid></control><display><type>article</type><title>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mordukhova, Elena A ; Lee, Hee-Soon ; Pan, Jae-Gu</creator><creatorcontrib>Mordukhova, Elena A ; Lee, Hee-Soon ; Pan, Jae-Gu</creatorcontrib><description>In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00654-08</identifier><identifier>PMID: 18978085</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acetic acid ; Acetic Acid - pharmacology ; Amino Acid Substitution - genetics ; Amino acids ; Anti-Bacterial Agents - pharmacology ; Bacillaceae - enzymology ; Bacillaceae - genetics ; Biological and medical sciences ; Biosynthetic Pathways ; Biotechnology ; Cloning ; DNA Mutational Analysis ; DNA, Bacterial - genetics ; Drug Tolerance ; E coli ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - physiology ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genes ; Heat-Shock Response ; High temperature ; Homoserine O-Succinyltransferase - genetics ; Homoserine O-Succinyltransferase - metabolism ; Methods. Procedures. Technologies ; Microbiology ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Mutation, Missense ; Physiology and Biotechnology ; Protein engineering ; Proteins</subject><ispartof>Applied and Environmental Microbiology, 2008-12, Vol.74 (24), p.7660-7668</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Dec 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</citedby><cites>FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607180/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607180/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20977217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18978085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordukhova, Elena A</creatorcontrib><creatorcontrib>Lee, Hee-Soon</creatorcontrib><creatorcontrib>Pan, Jae-Gu</creatorcontrib><title>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.</description><subject>Acetic acid</subject><subject>Acetic Acid - pharmacology</subject><subject>Amino Acid Substitution - genetics</subject><subject>Amino acids</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacillaceae - enzymology</subject><subject>Bacillaceae - genetics</subject><subject>Biological and medical sciences</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnology</subject><subject>Cloning</subject><subject>DNA Mutational Analysis</subject><subject>DNA, Bacterial - genetics</subject><subject>Drug Tolerance</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Heat-Shock Response</subject><subject>High temperature</subject><subject>Homoserine O-Succinyltransferase - genetics</subject><subject>Homoserine O-Succinyltransferase - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Physiology and Biotechnology</subject><subject>Protein engineering</subject><subject>Proteins</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAURSMEokNhxxoiJFiR8mzHXxukURlopSIWbdeW4zgTV048tZNBs-Sf42FGLbB6lt7x0X26RfEawRlCWHxarr6fATBaVyCeFAsEUlSUEPa0WABIWWFcw0nxIqU7AKiBiefFCRKSCxB0Ufy6HDYxbG1b3vQ2DiFNunHeTbtSj225NHZyJg-X98HbqEdjy9CVq2Qy7kzvdGmCd-U2P764aM2UVatt8PPkwrhHL0K2ZnbMH6vr2Rg37vyUTanLvmRfFs867ZN9dZynxe3X1c35RXX149vl-fKqMhSjqSLSUGq0poTTtjGctRgT3koOdWsEry1lDUfW6g63QjBEhKRGWIIbSiRpODktPh-8m7kZbGvsmEN4tYlu0HGngnbq383oerUOW4UZcCQgCz4cBTHczzZNanDJWO_1aMOcFEa1BMloBt_9B96FOY75OIWBSo5rzjL08QCZGFKKtntIgkDti1W5WPWnWAUi42_-Tv8IH5vMwPsjoJPRvttX5dIDh0FyjhF_DNe7df8zN6Z0GpS2g-K1wrXijO1PfXuAOh2UXscsur3GgAggyiTL8X8DFGnBsQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Mordukhova, Elena A</creator><creator>Lee, Hee-Soon</creator><creator>Pan, Jae-Gu</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</title><author>Mordukhova, Elena A ; Lee, Hee-Soon ; Pan, Jae-Gu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-39c55caa5375dbc76d2237d9704dc874e56b71eeaf2d88613895c8e32b5393b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - pharmacology</topic><topic>Amino Acid Substitution - genetics</topic><topic>Amino acids</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacillaceae - enzymology</topic><topic>Bacillaceae - genetics</topic><topic>Biological and medical sciences</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnology</topic><topic>Cloning</topic><topic>DNA Mutational Analysis</topic><topic>DNA, Bacterial - genetics</topic><topic>Drug Tolerance</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Heat-Shock Response</topic><topic>High temperature</topic><topic>Homoserine O-Succinyltransferase - genetics</topic><topic>Homoserine O-Succinyltransferase - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Physiology and Biotechnology</topic><topic>Protein engineering</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordukhova, Elena A</creatorcontrib><creatorcontrib>Lee, Hee-Soon</creatorcontrib><creatorcontrib>Pan, Jae-Gu</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordukhova, Elena A</au><au>Lee, Hee-Soon</au><au>Pan, Jae-Gu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>74</volume><issue>24</issue><spage>7660</spage><epage>7668</epage><pages>7660-7668</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44°C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetAE. coli protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44°C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetAE. coli to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetAE. coli enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18978085</pmid><doi>10.1128/AEM.00654-08</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2008-12, Vol.74 (24), p.7660-7668
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_fao_agris_US201301569676
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acetic acid
Acetic Acid - pharmacology
Amino Acid Substitution - genetics
Amino acids
Anti-Bacterial Agents - pharmacology
Bacillaceae - enzymology
Bacillaceae - genetics
Biological and medical sciences
Biosynthetic Pathways
Biotechnology
Cloning
DNA Mutational Analysis
DNA, Bacterial - genetics
Drug Tolerance
E coli
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - physiology
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Genes
Heat-Shock Response
High temperature
Homoserine O-Succinyltransferase - genetics
Homoserine O-Succinyltransferase - metabolism
Methods. Procedures. Technologies
Microbiology
Mutagenesis
Mutagenesis, Site-Directed
Mutation
Mutation, Missense
Physiology and Biotechnology
Protein engineering
Proteins
title Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Thermostability%20and%20Acetic%20Acid%20Tolerance%20of%20Escherichia%20coli%20via%20Directed%20Evolution%20of%20Homoserine%20o-Succinyltransferase&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Mordukhova,%20Elena%20A&rft.date=2008-12-01&rft.volume=74&rft.issue=24&rft.spage=7660&rft.epage=7668&rft.pages=7660-7668&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00654-08&rft_dat=%3Cproquest_fao_a%3E1613503431%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205972476&rft_id=info:pmid/18978085&rfr_iscdi=true