mechanism of transport by mitochondrial carriers based on analysis of symmetry
The structures of mitochondrial transporters and uncoupling proteins are 3-fold pseudosymmetrical, but their substrates and coupling ions are not. Thus, deviations from symmetry are to be expected in the substrate and ion-binding sites in the central aqueous cavity. By analyzing the 3-fold pseudosym...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-11, Vol.105 (46), p.17766-17771 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structures of mitochondrial transporters and uncoupling proteins are 3-fold pseudosymmetrical, but their substrates and coupling ions are not. Thus, deviations from symmetry are to be expected in the substrate and ion-binding sites in the central aqueous cavity. By analyzing the 3-fold pseudosymmetrical repeats from which their sequences are made, conserved asymmetric residues were found to cluster in a region of the central cavity identified previously as the common substrate-binding site. Conserved symmetrical residues required for the transport mechanism were found at the water-membrane interfaces, and they include the three PX[DE]XX[RK] motifs, which form a salt bridge network on the matrix side of the cavity when the substrate-binding site is open to the mitochondrial intermembrane space. Symmetrical residues in three [FY][DE]XX[RK] motifs are on the cytoplasmic side of the cavity and could form a salt bridge network when the substrate-binding site is accessible from the mitochondrial matrix. It is proposed that the opening and closing of the carrier may be coupled to the disruption and formation of the 2 salt bridge networks via a 3-fold rotary twist induced by substrate binding. The interaction energies of the networks allow members of the transporter family to be classified as strict exchangers or uniporters. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0809580105 |