Transcriptional Organization of Genes for Protocatechuate and Quinate Degradation from Acinetobacter sp. Strain ADP1
Quinate and protocatechuate are both abundant plant products and can serve, along with a large number of other aromatic or hydroaromatic compounds, as growth substrates for Acinetobacter sp. strain ADP1. The respective genes are part of the chromosomal dca-pca-qui-pob-hca cluster encoding these path...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2005-02, Vol.71 (2), p.1025-1034 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1034 |
---|---|
container_issue | 2 |
container_start_page | 1025 |
container_title | Applied and Environmental Microbiology |
container_volume | 71 |
creator | Dal, Sůreyya Trautwein, Gaby Gerischer, Ulrike |
description | Quinate and protocatechuate are both abundant plant products and can serve, along with a large number of other aromatic or hydroaromatic compounds, as growth substrates for Acinetobacter sp. strain ADP1. The respective genes are part of the chromosomal dca-pca-qui-pob-hca cluster encoding these pathways. The adjacent pca and qui gene clusters, which encode enzymes for protocatechuate breakdown via the {szligbeta}-ketoadipate pathway and for the conversion of quinate or shikimate to protocatechuate, respectively, have the same direction of transcription and are both expressed inducibly in response to protocatechuate. The pca genes are governed by the transcriptional activator-repressor PcaU. The mechanism governing qui gene expression was previously unknown. Here we report data suggesting the existence of a large 14-kb primary transcript covering the pca and qui genes. The area between the pca and qui genes contains no promoter activity, whereas a weak, constitutive promoter was identified upstream of quiA (quiAp). The 5' end of the quiA transcript was mapped. Northern blot analysis allowed the identification of a 12-kb transcript spanning pcaI to quiX. An analysis of the pca and qui gene transcripts in a strain missing the structural gene promoter pcaIp led to the identification of two pcaIp-independent transcripts (4 and 2.4 kb). The 2.4-kb transcript makes up about 25% of the total transcript abundance of quiA, and thus the majority of transcription of the last gene of the area is also driven by pcaIp. This report strongly supports the organization of the pca and qui genes as a pca-qui operon and, furthermore, suggests that PcaU is the regulator governing its expression. |
doi_str_mv | 10.1128/AEM.71.2.1025-1034.2005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300989034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>807840981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-491f8433fc781a98182f81f1da084d0b0ec2a112da00299ad2fafe703bdbf3c83</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiNERZfCX6AGCW4JY-fLPnBYtaVFKmpR27M169i7rhJ7aycg-PU42hULXGyP_LzjmXmdZacUCkoZ_7i8-Fq0tGAFBVbnFMqqYAD1s2xBQfC8LsvmebYAECJnrILj7GWMjwBQQcNfZMe0bgQVDVtk431AF1Ww29F6hz25CWt09hfOIfGGXGqnIzE-kNvgR69w1GozpZWg68i3ybr5fK7XAbudyAQ_kKWyTo9-hWrUgcRtQe7GgNaR5fktfZUdGeyjfr3fT7KHzxf3Z1f59c3ll7Plda5qRse8EtTwqiyNajlFwSlnhlNDOwRedbACrRimcaQYmBDYMYNGt1CuupUpFS9Psk-7vNtpNehOaZdq6OU22AHDT-nRyn9vnN3Itf8u66pp6ybpP-z1wT9NOo5ysFHpvken_RRl01ZAOczgu__ARz-FNM4oGdSibplgCWp3kAo-xqDNn0IoyNlVmVyVLZVMzq7K2VU5u5qUb_7u46Db25iA93sAo8LeJE-VjQcuzWTuJ3Fvd9zGrjc_bNAS4yBRD4dnE3O6Ywx6ieuQ8jzcMaBl-k1cpJrK34QpwSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205957292</pqid></control><display><type>article</type><title>Transcriptional Organization of Genes for Protocatechuate and Quinate Degradation from Acinetobacter sp. Strain ADP1</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dal, Sůreyya ; Trautwein, Gaby ; Gerischer, Ulrike</creator><creatorcontrib>Dal, Sůreyya ; Trautwein, Gaby ; Gerischer, Ulrike</creatorcontrib><description>Quinate and protocatechuate are both abundant plant products and can serve, along with a large number of other aromatic or hydroaromatic compounds, as growth substrates for Acinetobacter sp. strain ADP1. The respective genes are part of the chromosomal dca-pca-qui-pob-hca cluster encoding these pathways. The adjacent pca and qui gene clusters, which encode enzymes for protocatechuate breakdown via the {szligbeta}-ketoadipate pathway and for the conversion of quinate or shikimate to protocatechuate, respectively, have the same direction of transcription and are both expressed inducibly in response to protocatechuate. The pca genes are governed by the transcriptional activator-repressor PcaU. The mechanism governing qui gene expression was previously unknown. Here we report data suggesting the existence of a large 14-kb primary transcript covering the pca and qui genes. The area between the pca and qui genes contains no promoter activity, whereas a weak, constitutive promoter was identified upstream of quiA (quiAp). The 5' end of the quiA transcript was mapped. Northern blot analysis allowed the identification of a 12-kb transcript spanning pcaI to quiX. An analysis of the pca and qui gene transcripts in a strain missing the structural gene promoter pcaIp led to the identification of two pcaIp-independent transcripts (4 and 2.4 kb). The 2.4-kb transcript makes up about 25% of the total transcript abundance of quiA, and thus the majority of transcription of the last gene of the area is also driven by pcaIp. This report strongly supports the organization of the pca and qui genes as a pca-qui operon and, furthermore, suggests that PcaU is the regulator governing its expression.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.71.2.1025-1034.2005</identifier><identifier>PMID: 15691962</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acinetobacter - genetics ; Acinetobacter - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial ; Genetics ; Genetics and Molecular Biology ; Hydroxybenzoates - metabolism ; Microbiology ; Multigene Family ; Operon ; Promoter Regions, Genetic ; Quinic Acid - metabolism ; Transcription, Genetic</subject><ispartof>Applied and Environmental Microbiology, 2005-02, Vol.71 (2), p.1025-1034</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Feb 2005</rights><rights>Copyright © 2005, American Society for Microbiology 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-491f8433fc781a98182f81f1da084d0b0ec2a112da00299ad2fafe703bdbf3c83</citedby><cites>FETCH-LOGICAL-c521t-491f8433fc781a98182f81f1da084d0b0ec2a112da00299ad2fafe703bdbf3c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC546756/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC546756/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17037563$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15691962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dal, Sůreyya</creatorcontrib><creatorcontrib>Trautwein, Gaby</creatorcontrib><creatorcontrib>Gerischer, Ulrike</creatorcontrib><title>Transcriptional Organization of Genes for Protocatechuate and Quinate Degradation from Acinetobacter sp. Strain ADP1</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Quinate and protocatechuate are both abundant plant products and can serve, along with a large number of other aromatic or hydroaromatic compounds, as growth substrates for Acinetobacter sp. strain ADP1. The respective genes are part of the chromosomal dca-pca-qui-pob-hca cluster encoding these pathways. The adjacent pca and qui gene clusters, which encode enzymes for protocatechuate breakdown via the {szligbeta}-ketoadipate pathway and for the conversion of quinate or shikimate to protocatechuate, respectively, have the same direction of transcription and are both expressed inducibly in response to protocatechuate. The pca genes are governed by the transcriptional activator-repressor PcaU. The mechanism governing qui gene expression was previously unknown. Here we report data suggesting the existence of a large 14-kb primary transcript covering the pca and qui genes. The area between the pca and qui genes contains no promoter activity, whereas a weak, constitutive promoter was identified upstream of quiA (quiAp). The 5' end of the quiA transcript was mapped. Northern blot analysis allowed the identification of a 12-kb transcript spanning pcaI to quiX. An analysis of the pca and qui gene transcripts in a strain missing the structural gene promoter pcaIp led to the identification of two pcaIp-independent transcripts (4 and 2.4 kb). The 2.4-kb transcript makes up about 25% of the total transcript abundance of quiA, and thus the majority of transcription of the last gene of the area is also driven by pcaIp. This report strongly supports the organization of the pca and qui genes as a pca-qui operon and, furthermore, suggests that PcaU is the regulator governing its expression.</description><subject>Acinetobacter - genetics</subject><subject>Acinetobacter - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetics</subject><subject>Genetics and Molecular Biology</subject><subject>Hydroxybenzoates - metabolism</subject><subject>Microbiology</subject><subject>Multigene Family</subject><subject>Operon</subject><subject>Promoter Regions, Genetic</subject><subject>Quinic Acid - metabolism</subject><subject>Transcription, Genetic</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkk1v1DAQhiNERZfCX6AGCW4JY-fLPnBYtaVFKmpR27M169i7rhJ7aycg-PU42hULXGyP_LzjmXmdZacUCkoZ_7i8-Fq0tGAFBVbnFMqqYAD1s2xBQfC8LsvmebYAECJnrILj7GWMjwBQQcNfZMe0bgQVDVtk431AF1Ww29F6hz25CWt09hfOIfGGXGqnIzE-kNvgR69w1GozpZWg68i3ybr5fK7XAbudyAQ_kKWyTo9-hWrUgcRtQe7GgNaR5fktfZUdGeyjfr3fT7KHzxf3Z1f59c3ll7Plda5qRse8EtTwqiyNajlFwSlnhlNDOwRedbACrRimcaQYmBDYMYNGt1CuupUpFS9Psk-7vNtpNehOaZdq6OU22AHDT-nRyn9vnN3Itf8u66pp6ybpP-z1wT9NOo5ysFHpvken_RRl01ZAOczgu__ARz-FNM4oGdSibplgCWp3kAo-xqDNn0IoyNlVmVyVLZVMzq7K2VU5u5qUb_7u46Db25iA93sAo8LeJE-VjQcuzWTuJ3Fvd9zGrjc_bNAS4yBRD4dnE3O6Ywx6ieuQ8jzcMaBl-k1cpJrK34QpwSA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Dal, Sůreyya</creator><creator>Trautwein, Gaby</creator><creator>Gerischer, Ulrike</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050201</creationdate><title>Transcriptional Organization of Genes for Protocatechuate and Quinate Degradation from Acinetobacter sp. Strain ADP1</title><author>Dal, Sůreyya ; Trautwein, Gaby ; Gerischer, Ulrike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-491f8433fc781a98182f81f1da084d0b0ec2a112da00299ad2fafe703bdbf3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acinetobacter - genetics</topic><topic>Acinetobacter - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetics</topic><topic>Genetics and Molecular Biology</topic><topic>Hydroxybenzoates - metabolism</topic><topic>Microbiology</topic><topic>Multigene Family</topic><topic>Operon</topic><topic>Promoter Regions, Genetic</topic><topic>Quinic Acid - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dal, Sůreyya</creatorcontrib><creatorcontrib>Trautwein, Gaby</creatorcontrib><creatorcontrib>Gerischer, Ulrike</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dal, Sůreyya</au><au>Trautwein, Gaby</au><au>Gerischer, Ulrike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional Organization of Genes for Protocatechuate and Quinate Degradation from Acinetobacter sp. Strain ADP1</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>71</volume><issue>2</issue><spage>1025</spage><epage>1034</epage><pages>1025-1034</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Quinate and protocatechuate are both abundant plant products and can serve, along with a large number of other aromatic or hydroaromatic compounds, as growth substrates for Acinetobacter sp. strain ADP1. The respective genes are part of the chromosomal dca-pca-qui-pob-hca cluster encoding these pathways. The adjacent pca and qui gene clusters, which encode enzymes for protocatechuate breakdown via the {szligbeta}-ketoadipate pathway and for the conversion of quinate or shikimate to protocatechuate, respectively, have the same direction of transcription and are both expressed inducibly in response to protocatechuate. The pca genes are governed by the transcriptional activator-repressor PcaU. The mechanism governing qui gene expression was previously unknown. Here we report data suggesting the existence of a large 14-kb primary transcript covering the pca and qui genes. The area between the pca and qui genes contains no promoter activity, whereas a weak, constitutive promoter was identified upstream of quiA (quiAp). The 5' end of the quiA transcript was mapped. Northern blot analysis allowed the identification of a 12-kb transcript spanning pcaI to quiX. An analysis of the pca and qui gene transcripts in a strain missing the structural gene promoter pcaIp led to the identification of two pcaIp-independent transcripts (4 and 2.4 kb). The 2.4-kb transcript makes up about 25% of the total transcript abundance of quiA, and thus the majority of transcription of the last gene of the area is also driven by pcaIp. This report strongly supports the organization of the pca and qui genes as a pca-qui operon and, furthermore, suggests that PcaU is the regulator governing its expression.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>15691962</pmid><doi>10.1128/AEM.71.2.1025-1034.2005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2005-02, Vol.71 (2), p.1025-1034 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_fao_agris_US201300989034 |
source | MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acinetobacter - genetics Acinetobacter - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences Enzymes Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Bacterial Genetics Genetics and Molecular Biology Hydroxybenzoates - metabolism Microbiology Multigene Family Operon Promoter Regions, Genetic Quinic Acid - metabolism Transcription, Genetic |
title | Transcriptional Organization of Genes for Protocatechuate and Quinate Degradation from Acinetobacter sp. Strain ADP1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20Organization%20of%20Genes%20for%20Protocatechuate%20and%20Quinate%20Degradation%20from%20Acinetobacter%20sp.%20Strain%20ADP1&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Dal,%20Su%CC%8Areyya&rft.date=2005-02-01&rft.volume=71&rft.issue=2&rft.spage=1025&rft.epage=1034&rft.pages=1025-1034&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.71.2.1025-1034.2005&rft_dat=%3Cproquest_fao_a%3E807840981%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205957292&rft_id=info:pmid/15691962&rfr_iscdi=true |