Is the LIM-domain protein HaWLIM1 associated with cortical microtubles in sunflower protoplasts?

Flowering plants express several LIM-domain proteins related to the animal cystein-rich proteins. The expression of sunflower LIM genes was followed by RT-PCR in cultured sunflower protoplasts. A transcript was detected only for HaWLIM1, but not for the other two genes HaPLIM1 and HaPLIM2. Polyclona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2003, Vol.44 (10), p.1055-1063
Hauptverfasser: Briere, C, Bordel, A.C, Barthou, H, Jauneau, A, Steinmetz, A, Alibert, G, Petitprez, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flowering plants express several LIM-domain proteins related to the animal cystein-rich proteins. The expression of sunflower LIM genes was followed by RT-PCR in cultured sunflower protoplasts. A transcript was detected only for HaWLIM1, but not for the other two genes HaPLIM1 and HaPLIM2. Polyclonal antibodies raised against either full length recombinant HaWLIM1 protein or peptides recognized a 27 kDa polypeptide on Western blots. Immunocytolocalization studies showed that HaWLIM1 is located in the cytoplasm and in the nucleus. In the cytoplasm, HaWLIM1 is localized in punctate structures, distributed along microtubule bundles. Depolymerizing microtubules with oryzalin resulted in a strong modification of the HaWLIM1 cortical pattern. In contrast, treatment of protoplasts with latrunculin B, which disrupts actin filaments, had no effect on HaWLIM1 localization. HaWLIM1 was also located within the nucleus of interphase protoplasts. During mitosis, nuclear labelling was observed in prophase, which decreased in metaphase, disappeared in anaphase, and recovered in telophase. These results suggest a dual role for HaWLIM1: in the cytoplasm, as a component of molecular complexes which may interact with microtubules, and in the nucleus, as a partner of transcription factors during interphase.
ISSN:0032-0781
1471-9053