Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes
Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-02, Vol.105 (5), p.1478-1482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1482 |
---|---|
container_issue | 5 |
container_start_page | 1478 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Morin, Trevor J Kobertz, William R |
description | Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits. |
doi_str_mv | 10.1073/pnas.0710366105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300856829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25451307</jstor_id><sourcerecordid>25451307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</originalsourceid><addsrcrecordid>eNp9kL1O5DAUhS0EgtmBmgpIRxW4_ovtBgmNgF2BdoWA2nIcewhKnFGcICh5Jcp9CB5in2QTDWKgobrF-c659x6EdjEcYRD0eBFMPAKBgWYZBr6GJhgUTjOmYB1NAIhIJSNsC_2I8QEAFJewibawJIRiziboetb0oSvDPKldnbcmuHSYrihckVzOfp8lb69p7PM-lF1MypD4PtiubMLouPz38jex9yYEVyW2qReVe3JxG214U0W38z6n6O787Hb2M736c_FrdnqVWqZIl1rvvARsrBWYcEkY9hR7Z0ApkBaszGWuMp8DKYhg1HohqOHCSFAZl0rSKTpZ5i76vHaFdaFrTaUXbVmb9lk3ptRflVDe63nzqIfXGc7UEHC8DLBtE2Pr_IcXgx7b1WO7etXu4Nj_vHLFv9f5CRidqziuucZMjEcffgto31dV5566gdxbkg-xa9oPlHDGMR2Om6KDpe5No828LaO-uyEwaCB5Jomi_wFnLqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Morin, Trevor J ; Kobertz, William R</creator><creatorcontrib>Morin, Trevor J ; Kobertz, William R</creatorcontrib><description>Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0710366105</identifier><identifier>PMID: 18223154</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Charybdotoxin - analogs & derivatives ; Charybdotoxin - chemical synthesis ; Charybdotoxin - chemistry ; Charybdotoxin - pharmacology ; Disulfides - chemical synthesis ; Disulfides - chemistry ; Disulfides - pharmacology ; Electric potential ; Humans ; Ion channels ; KCNQ1 Potassium Channel - analysis ; KCNQ1 Potassium Channel - antagonists & inhibitors ; KCNQ1 Potassium Channel - metabolism ; Kinetics ; Messenger RNA ; Oocytes ; Oocytes - metabolism ; Physical Sciences ; Potassium Channels, Voltage-Gated - analysis ; Potassium Channels, Voltage-Gated - antagonists & inhibitors ; Potassium Channels, Voltage-Gated - metabolism ; Protein Subunits - analysis ; Protein Subunits - antagonists & inhibitors ; Protein Subunits - metabolism ; Reagents ; Research design ; Stoichiometry ; Thiols ; Toxins ; Xenopus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-02, Vol.105 (5), p.1478-1482</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>2008 by The National Academy of Sciences of the USA 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</citedby><cites>FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25451307$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25451307$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18223154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Trevor J</creatorcontrib><creatorcontrib>Kobertz, William R</creatorcontrib><title>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Charybdotoxin - analogs & derivatives</subject><subject>Charybdotoxin - chemical synthesis</subject><subject>Charybdotoxin - chemistry</subject><subject>Charybdotoxin - pharmacology</subject><subject>Disulfides - chemical synthesis</subject><subject>Disulfides - chemistry</subject><subject>Disulfides - pharmacology</subject><subject>Electric potential</subject><subject>Humans</subject><subject>Ion channels</subject><subject>KCNQ1 Potassium Channel - analysis</subject><subject>KCNQ1 Potassium Channel - antagonists & inhibitors</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Kinetics</subject><subject>Messenger RNA</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Physical Sciences</subject><subject>Potassium Channels, Voltage-Gated - analysis</subject><subject>Potassium Channels, Voltage-Gated - antagonists & inhibitors</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>Protein Subunits - analysis</subject><subject>Protein Subunits - antagonists & inhibitors</subject><subject>Protein Subunits - metabolism</subject><subject>Reagents</subject><subject>Research design</subject><subject>Stoichiometry</subject><subject>Thiols</subject><subject>Toxins</subject><subject>Xenopus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL1O5DAUhS0EgtmBmgpIRxW4_ovtBgmNgF2BdoWA2nIcewhKnFGcICh5Jcp9CB5in2QTDWKgobrF-c659x6EdjEcYRD0eBFMPAKBgWYZBr6GJhgUTjOmYB1NAIhIJSNsC_2I8QEAFJewibawJIRiziboetb0oSvDPKldnbcmuHSYrihckVzOfp8lb69p7PM-lF1MypD4PtiubMLouPz38jex9yYEVyW2qReVe3JxG214U0W38z6n6O787Hb2M736c_FrdnqVWqZIl1rvvARsrBWYcEkY9hR7Z0ApkBaszGWuMp8DKYhg1HohqOHCSFAZl0rSKTpZ5i76vHaFdaFrTaUXbVmb9lk3ptRflVDe63nzqIfXGc7UEHC8DLBtE2Pr_IcXgx7b1WO7etXu4Nj_vHLFv9f5CRidqziuucZMjEcffgto31dV5566gdxbkg-xa9oPlHDGMR2Om6KDpe5No828LaO-uyEwaCB5Jomi_wFnLqNM</recordid><startdate>20080205</startdate><enddate>20080205</enddate><creator>Morin, Trevor J</creator><creator>Kobertz, William R</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20080205</creationdate><title>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</title><author>Morin, Trevor J ; Kobertz, William R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Charybdotoxin - analogs & derivatives</topic><topic>Charybdotoxin - chemical synthesis</topic><topic>Charybdotoxin - chemistry</topic><topic>Charybdotoxin - pharmacology</topic><topic>Disulfides - chemical synthesis</topic><topic>Disulfides - chemistry</topic><topic>Disulfides - pharmacology</topic><topic>Electric potential</topic><topic>Humans</topic><topic>Ion channels</topic><topic>KCNQ1 Potassium Channel - analysis</topic><topic>KCNQ1 Potassium Channel - antagonists & inhibitors</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Kinetics</topic><topic>Messenger RNA</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Physical Sciences</topic><topic>Potassium Channels, Voltage-Gated - analysis</topic><topic>Potassium Channels, Voltage-Gated - antagonists & inhibitors</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>Protein Subunits - analysis</topic><topic>Protein Subunits - antagonists & inhibitors</topic><topic>Protein Subunits - metabolism</topic><topic>Reagents</topic><topic>Research design</topic><topic>Stoichiometry</topic><topic>Thiols</topic><topic>Toxins</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Trevor J</creatorcontrib><creatorcontrib>Kobertz, William R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Trevor J</au><au>Kobertz, William R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-02-05</date><risdate>2008</risdate><volume>105</volume><issue>5</issue><spage>1478</spage><epage>1482</epage><pages>1478-1482</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18223154</pmid><doi>10.1073/pnas.0710366105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-02, Vol.105 (5), p.1478-1482 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201300856829 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cell Membrane - chemistry Cell Membrane - drug effects Cell Membrane - metabolism Charybdotoxin - analogs & derivatives Charybdotoxin - chemical synthesis Charybdotoxin - chemistry Charybdotoxin - pharmacology Disulfides - chemical synthesis Disulfides - chemistry Disulfides - pharmacology Electric potential Humans Ion channels KCNQ1 Potassium Channel - analysis KCNQ1 Potassium Channel - antagonists & inhibitors KCNQ1 Potassium Channel - metabolism Kinetics Messenger RNA Oocytes Oocytes - metabolism Physical Sciences Potassium Channels, Voltage-Gated - analysis Potassium Channels, Voltage-Gated - antagonists & inhibitors Potassium Channels, Voltage-Gated - metabolism Protein Subunits - analysis Protein Subunits - antagonists & inhibitors Protein Subunits - metabolism Reagents Research design Stoichiometry Thiols Toxins Xenopus |
title | Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counting%20membrane-embedded%20KCNE%20%CE%B2-subunits%20in%20functioning%20K%E2%81%BA%20channel%20complexes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Morin,%20Trevor%20J&rft.date=2008-02-05&rft.volume=105&rft.issue=5&rft.spage=1478&rft.epage=1482&rft.pages=1478-1482&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0710366105&rft_dat=%3Cjstor_fao_a%3E25451307%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18223154&rft_jstor_id=25451307&rfr_iscdi=true |