Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes

Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-02, Vol.105 (5), p.1478-1482
Hauptverfasser: Morin, Trevor J, Kobertz, William R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1482
container_issue 5
container_start_page 1478
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Morin, Trevor J
Kobertz, William R
description Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.
doi_str_mv 10.1073/pnas.0710366105
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300856829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25451307</jstor_id><sourcerecordid>25451307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</originalsourceid><addsrcrecordid>eNp9kL1O5DAUhS0EgtmBmgpIRxW4_ovtBgmNgF2BdoWA2nIcewhKnFGcICh5Jcp9CB5in2QTDWKgobrF-c659x6EdjEcYRD0eBFMPAKBgWYZBr6GJhgUTjOmYB1NAIhIJSNsC_2I8QEAFJewibawJIRiziboetb0oSvDPKldnbcmuHSYrihckVzOfp8lb69p7PM-lF1MypD4PtiubMLouPz38jex9yYEVyW2qReVe3JxG214U0W38z6n6O787Hb2M736c_FrdnqVWqZIl1rvvARsrBWYcEkY9hR7Z0ApkBaszGWuMp8DKYhg1HohqOHCSFAZl0rSKTpZ5i76vHaFdaFrTaUXbVmb9lk3ptRflVDe63nzqIfXGc7UEHC8DLBtE2Pr_IcXgx7b1WO7etXu4Nj_vHLFv9f5CRidqziuucZMjEcffgto31dV5566gdxbkg-xa9oPlHDGMR2Om6KDpe5No828LaO-uyEwaCB5Jomi_wFnLqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Morin, Trevor J ; Kobertz, William R</creator><creatorcontrib>Morin, Trevor J ; Kobertz, William R</creatorcontrib><description>Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0710366105</identifier><identifier>PMID: 18223154</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Charybdotoxin - analogs &amp; derivatives ; Charybdotoxin - chemical synthesis ; Charybdotoxin - chemistry ; Charybdotoxin - pharmacology ; Disulfides - chemical synthesis ; Disulfides - chemistry ; Disulfides - pharmacology ; Electric potential ; Humans ; Ion channels ; KCNQ1 Potassium Channel - analysis ; KCNQ1 Potassium Channel - antagonists &amp; inhibitors ; KCNQ1 Potassium Channel - metabolism ; Kinetics ; Messenger RNA ; Oocytes ; Oocytes - metabolism ; Physical Sciences ; Potassium Channels, Voltage-Gated - analysis ; Potassium Channels, Voltage-Gated - antagonists &amp; inhibitors ; Potassium Channels, Voltage-Gated - metabolism ; Protein Subunits - analysis ; Protein Subunits - antagonists &amp; inhibitors ; Protein Subunits - metabolism ; Reagents ; Research design ; Stoichiometry ; Thiols ; Toxins ; Xenopus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-02, Vol.105 (5), p.1478-1482</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>2008 by The National Academy of Sciences of the USA 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</citedby><cites>FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25451307$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25451307$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18223154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Trevor J</creatorcontrib><creatorcontrib>Kobertz, William R</creatorcontrib><title>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Charybdotoxin - analogs &amp; derivatives</subject><subject>Charybdotoxin - chemical synthesis</subject><subject>Charybdotoxin - chemistry</subject><subject>Charybdotoxin - pharmacology</subject><subject>Disulfides - chemical synthesis</subject><subject>Disulfides - chemistry</subject><subject>Disulfides - pharmacology</subject><subject>Electric potential</subject><subject>Humans</subject><subject>Ion channels</subject><subject>KCNQ1 Potassium Channel - analysis</subject><subject>KCNQ1 Potassium Channel - antagonists &amp; inhibitors</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Kinetics</subject><subject>Messenger RNA</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Physical Sciences</subject><subject>Potassium Channels, Voltage-Gated - analysis</subject><subject>Potassium Channels, Voltage-Gated - antagonists &amp; inhibitors</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>Protein Subunits - analysis</subject><subject>Protein Subunits - antagonists &amp; inhibitors</subject><subject>Protein Subunits - metabolism</subject><subject>Reagents</subject><subject>Research design</subject><subject>Stoichiometry</subject><subject>Thiols</subject><subject>Toxins</subject><subject>Xenopus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL1O5DAUhS0EgtmBmgpIRxW4_ovtBgmNgF2BdoWA2nIcewhKnFGcICh5Jcp9CB5in2QTDWKgobrF-c659x6EdjEcYRD0eBFMPAKBgWYZBr6GJhgUTjOmYB1NAIhIJSNsC_2I8QEAFJewibawJIRiziboetb0oSvDPKldnbcmuHSYrihckVzOfp8lb69p7PM-lF1MypD4PtiubMLouPz38jex9yYEVyW2qReVe3JxG214U0W38z6n6O787Hb2M736c_FrdnqVWqZIl1rvvARsrBWYcEkY9hR7Z0ApkBaszGWuMp8DKYhg1HohqOHCSFAZl0rSKTpZ5i76vHaFdaFrTaUXbVmb9lk3ptRflVDe63nzqIfXGc7UEHC8DLBtE2Pr_IcXgx7b1WO7etXu4Nj_vHLFv9f5CRidqziuucZMjEcffgto31dV5566gdxbkg-xa9oPlHDGMR2Om6KDpe5No828LaO-uyEwaCB5Jomi_wFnLqNM</recordid><startdate>20080205</startdate><enddate>20080205</enddate><creator>Morin, Trevor J</creator><creator>Kobertz, William R</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20080205</creationdate><title>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</title><author>Morin, Trevor J ; Kobertz, William R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-cfef801acc71258241f31fea09908c0c8b8b96fb02d2743cf773a57a809658983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Charybdotoxin - analogs &amp; derivatives</topic><topic>Charybdotoxin - chemical synthesis</topic><topic>Charybdotoxin - chemistry</topic><topic>Charybdotoxin - pharmacology</topic><topic>Disulfides - chemical synthesis</topic><topic>Disulfides - chemistry</topic><topic>Disulfides - pharmacology</topic><topic>Electric potential</topic><topic>Humans</topic><topic>Ion channels</topic><topic>KCNQ1 Potassium Channel - analysis</topic><topic>KCNQ1 Potassium Channel - antagonists &amp; inhibitors</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Kinetics</topic><topic>Messenger RNA</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Physical Sciences</topic><topic>Potassium Channels, Voltage-Gated - analysis</topic><topic>Potassium Channels, Voltage-Gated - antagonists &amp; inhibitors</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>Protein Subunits - analysis</topic><topic>Protein Subunits - antagonists &amp; inhibitors</topic><topic>Protein Subunits - metabolism</topic><topic>Reagents</topic><topic>Research design</topic><topic>Stoichiometry</topic><topic>Thiols</topic><topic>Toxins</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Trevor J</creatorcontrib><creatorcontrib>Kobertz, William R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Trevor J</au><au>Kobertz, William R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-02-05</date><risdate>2008</risdate><volume>105</volume><issue>5</issue><spage>1478</spage><epage>1482</epage><pages>1478-1482</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K⁺ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K⁺ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K⁺ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K⁺ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K⁺ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18223154</pmid><doi>10.1073/pnas.0710366105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-02, Vol.105 (5), p.1478-1482
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201300856829
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cell Membrane - chemistry
Cell Membrane - drug effects
Cell Membrane - metabolism
Charybdotoxin - analogs & derivatives
Charybdotoxin - chemical synthesis
Charybdotoxin - chemistry
Charybdotoxin - pharmacology
Disulfides - chemical synthesis
Disulfides - chemistry
Disulfides - pharmacology
Electric potential
Humans
Ion channels
KCNQ1 Potassium Channel - analysis
KCNQ1 Potassium Channel - antagonists & inhibitors
KCNQ1 Potassium Channel - metabolism
Kinetics
Messenger RNA
Oocytes
Oocytes - metabolism
Physical Sciences
Potassium Channels, Voltage-Gated - analysis
Potassium Channels, Voltage-Gated - antagonists & inhibitors
Potassium Channels, Voltage-Gated - metabolism
Protein Subunits - analysis
Protein Subunits - antagonists & inhibitors
Protein Subunits - metabolism
Reagents
Research design
Stoichiometry
Thiols
Toxins
Xenopus
title Counting membrane-embedded KCNE β-subunits in functioning K⁺ channel complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counting%20membrane-embedded%20KCNE%20%CE%B2-subunits%20in%20functioning%20K%E2%81%BA%20channel%20complexes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Morin,%20Trevor%20J&rft.date=2008-02-05&rft.volume=105&rft.issue=5&rft.spage=1478&rft.epage=1482&rft.pages=1478-1482&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0710366105&rft_dat=%3Cjstor_fao_a%3E25451307%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18223154&rft_jstor_id=25451307&rfr_iscdi=true