Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water

Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chroma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2008, Vol.71 (5), p.101-108
Hauptverfasser: Morris, G.A, Ang, S, Hill, S.E, Lewis, S, Schafer, B, Nobbmann, U, Harding, S.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 5
container_start_page 101
container_title Carbohydrate polymers
container_volume 71
creator Morris, G.A
Ang, S
Hill, S.E
Lewis, S
Schafer, B
Nobbmann, U
Harding, S.E
description Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.
format Article
fullrecord <record><control><sourceid>fao</sourceid><recordid>TN_cdi_fao_agris_US201300844186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US201300844186</sourcerecordid><originalsourceid>FETCH-fao_agris_US2013008441863</originalsourceid><addsrcrecordid>eNqFisFKAzEURYNUcFr9Bt_SgY4kTphGt6LWhSBU18Mzk4wjaR7kZSj9LH_Eb3IQN131bg7ncE9EoczqtlK11jNRSKV1ZRq1OhNz5i85rVGyEOMLBUywRWbA2AFTGPNAESxFT2mLf0IePhJG--k6-Pm-UhAcdpAJdLk8DE0JT2G0GPkaXjFleL6bwt5S7yLDEGGH2aVzceoxsLv450JcPj683a8rj9RinwZu3zc3UtVSGq2Vaerjj1_nGkZ7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</title><source>Elsevier ScienceDirect Journals</source><creator>Morris, G.A ; Ang, S ; Hill, S.E ; Lewis, S ; Schafer, B ; Nobbmann, U ; Harding, S.E</creator><creatorcontrib>Morris, G.A ; Ang, S ; Hill, S.E ; Lewis, S ; Schafer, B ; Nobbmann, U ; Harding, S.E</creatorcontrib><description>Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><language>eng</language><subject>chemical analysis ; chemical structure ; defusion ; diffusion ; energy-storage polysaccharides ; equations ; glucans ; glycogen ; intrinsic velocity ; light scattering ; methodology ; molecular weight ; polysaccharides ; sedimentation velocity ; shrinking factors ; translational diffusion ; viscosity ; water</subject><ispartof>Carbohydrate polymers, 2008, Vol.71 (5), p.101-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>Morris, G.A</creatorcontrib><creatorcontrib>Ang, S</creatorcontrib><creatorcontrib>Hill, S.E</creatorcontrib><creatorcontrib>Lewis, S</creatorcontrib><creatorcontrib>Schafer, B</creatorcontrib><creatorcontrib>Nobbmann, U</creatorcontrib><creatorcontrib>Harding, S.E</creatorcontrib><title>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</title><title>Carbohydrate polymers</title><description>Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.</description><subject>chemical analysis</subject><subject>chemical structure</subject><subject>defusion</subject><subject>diffusion</subject><subject>energy-storage polysaccharides</subject><subject>equations</subject><subject>glucans</subject><subject>glycogen</subject><subject>intrinsic velocity</subject><subject>light scattering</subject><subject>methodology</subject><subject>molecular weight</subject><subject>polysaccharides</subject><subject>sedimentation velocity</subject><subject>shrinking factors</subject><subject>translational diffusion</subject><subject>viscosity</subject><subject>water</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFisFKAzEURYNUcFr9Bt_SgY4kTphGt6LWhSBU18Mzk4wjaR7kZSj9LH_Eb3IQN131bg7ncE9EoczqtlK11jNRSKV1ZRq1OhNz5i85rVGyEOMLBUywRWbA2AFTGPNAESxFT2mLf0IePhJG--k6-Pm-UhAcdpAJdLk8DE0JT2G0GPkaXjFleL6bwt5S7yLDEGGH2aVzceoxsLv450JcPj683a8rj9RinwZu3zc3UtVSGq2Vaerjj1_nGkZ7</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Morris, G.A</creator><creator>Ang, S</creator><creator>Hill, S.E</creator><creator>Lewis, S</creator><creator>Schafer, B</creator><creator>Nobbmann, U</creator><creator>Harding, S.E</creator><scope>FBQ</scope></search><sort><creationdate>2008</creationdate><title>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</title><author>Morris, G.A ; Ang, S ; Hill, S.E ; Lewis, S ; Schafer, B ; Nobbmann, U ; Harding, S.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fao_agris_US2013008441863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>chemical analysis</topic><topic>chemical structure</topic><topic>defusion</topic><topic>diffusion</topic><topic>energy-storage polysaccharides</topic><topic>equations</topic><topic>glucans</topic><topic>glycogen</topic><topic>intrinsic velocity</topic><topic>light scattering</topic><topic>methodology</topic><topic>molecular weight</topic><topic>polysaccharides</topic><topic>sedimentation velocity</topic><topic>shrinking factors</topic><topic>translational diffusion</topic><topic>viscosity</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, G.A</creatorcontrib><creatorcontrib>Ang, S</creatorcontrib><creatorcontrib>Hill, S.E</creatorcontrib><creatorcontrib>Lewis, S</creatorcontrib><creatorcontrib>Schafer, B</creatorcontrib><creatorcontrib>Nobbmann, U</creatorcontrib><creatorcontrib>Harding, S.E</creatorcontrib><collection>AGRIS</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, G.A</au><au>Ang, S</au><au>Hill, S.E</au><au>Lewis, S</au><au>Schafer, B</au><au>Nobbmann, U</au><au>Harding, S.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</atitle><jtitle>Carbohydrate polymers</jtitle><date>2008</date><risdate>2008</risdate><volume>71</volume><issue>5</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2008, Vol.71 (5), p.101-108
issn 0144-8617
1879-1344
language eng
recordid cdi_fao_agris_US201300844186
source Elsevier ScienceDirect Journals
subjects chemical analysis
chemical structure
defusion
diffusion
energy-storage polysaccharides
equations
glucans
glycogen
intrinsic velocity
light scattering
methodology
molecular weight
polysaccharides
sedimentation velocity
shrinking factors
translational diffusion
viscosity
water
title Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fao&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molar%20mass%20and%20solution%20conformation%20of%20branched%20%CE%B1(1%20lead%20to%204),%20%CE%B1(1%20lead%20to%206)%20Glucans.%20Part%20I:%20Glycogens%20in%20water&rft.jtitle=Carbohydrate%20polymers&rft.au=Morris,%20G.A&rft.date=2008&rft.volume=71&rft.issue=5&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/&rft_dat=%3Cfao%3EUS201300844186%3C/fao%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true