Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water
Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chroma...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2008, Vol.71 (5), p.101-108 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 5 |
container_start_page | 101 |
container_title | Carbohydrate polymers |
container_volume | 71 |
creator | Morris, G.A Ang, S Hill, S.E Lewis, S Schafer, B Nobbmann, U Harding, S.E |
description | Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation. |
format | Article |
fullrecord | <record><control><sourceid>fao</sourceid><recordid>TN_cdi_fao_agris_US201300844186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US201300844186</sourcerecordid><originalsourceid>FETCH-fao_agris_US2013008441863</originalsourceid><addsrcrecordid>eNqFisFKAzEURYNUcFr9Bt_SgY4kTphGt6LWhSBU18Mzk4wjaR7kZSj9LH_Eb3IQN131bg7ncE9EoczqtlK11jNRSKV1ZRq1OhNz5i85rVGyEOMLBUywRWbA2AFTGPNAESxFT2mLf0IePhJG--k6-Pm-UhAcdpAJdLk8DE0JT2G0GPkaXjFleL6bwt5S7yLDEGGH2aVzceoxsLv450JcPj683a8rj9RinwZu3zc3UtVSGq2Vaerjj1_nGkZ7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</title><source>Elsevier ScienceDirect Journals</source><creator>Morris, G.A ; Ang, S ; Hill, S.E ; Lewis, S ; Schafer, B ; Nobbmann, U ; Harding, S.E</creator><creatorcontrib>Morris, G.A ; Ang, S ; Hill, S.E ; Lewis, S ; Schafer, B ; Nobbmann, U ; Harding, S.E</creatorcontrib><description>Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><language>eng</language><subject>chemical analysis ; chemical structure ; defusion ; diffusion ; energy-storage polysaccharides ; equations ; glucans ; glycogen ; intrinsic velocity ; light scattering ; methodology ; molecular weight ; polysaccharides ; sedimentation velocity ; shrinking factors ; translational diffusion ; viscosity ; water</subject><ispartof>Carbohydrate polymers, 2008, Vol.71 (5), p.101-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>Morris, G.A</creatorcontrib><creatorcontrib>Ang, S</creatorcontrib><creatorcontrib>Hill, S.E</creatorcontrib><creatorcontrib>Lewis, S</creatorcontrib><creatorcontrib>Schafer, B</creatorcontrib><creatorcontrib>Nobbmann, U</creatorcontrib><creatorcontrib>Harding, S.E</creatorcontrib><title>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</title><title>Carbohydrate polymers</title><description>Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.</description><subject>chemical analysis</subject><subject>chemical structure</subject><subject>defusion</subject><subject>diffusion</subject><subject>energy-storage polysaccharides</subject><subject>equations</subject><subject>glucans</subject><subject>glycogen</subject><subject>intrinsic velocity</subject><subject>light scattering</subject><subject>methodology</subject><subject>molecular weight</subject><subject>polysaccharides</subject><subject>sedimentation velocity</subject><subject>shrinking factors</subject><subject>translational diffusion</subject><subject>viscosity</subject><subject>water</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFisFKAzEURYNUcFr9Bt_SgY4kTphGt6LWhSBU18Mzk4wjaR7kZSj9LH_Eb3IQN131bg7ncE9EoczqtlK11jNRSKV1ZRq1OhNz5i85rVGyEOMLBUywRWbA2AFTGPNAESxFT2mLf0IePhJG--k6-Pm-UhAcdpAJdLk8DE0JT2G0GPkaXjFleL6bwt5S7yLDEGGH2aVzceoxsLv450JcPj683a8rj9RinwZu3zc3UtVSGq2Vaerjj1_nGkZ7</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Morris, G.A</creator><creator>Ang, S</creator><creator>Hill, S.E</creator><creator>Lewis, S</creator><creator>Schafer, B</creator><creator>Nobbmann, U</creator><creator>Harding, S.E</creator><scope>FBQ</scope></search><sort><creationdate>2008</creationdate><title>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</title><author>Morris, G.A ; Ang, S ; Hill, S.E ; Lewis, S ; Schafer, B ; Nobbmann, U ; Harding, S.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-fao_agris_US2013008441863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>chemical analysis</topic><topic>chemical structure</topic><topic>defusion</topic><topic>diffusion</topic><topic>energy-storage polysaccharides</topic><topic>equations</topic><topic>glucans</topic><topic>glycogen</topic><topic>intrinsic velocity</topic><topic>light scattering</topic><topic>methodology</topic><topic>molecular weight</topic><topic>polysaccharides</topic><topic>sedimentation velocity</topic><topic>shrinking factors</topic><topic>translational diffusion</topic><topic>viscosity</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, G.A</creatorcontrib><creatorcontrib>Ang, S</creatorcontrib><creatorcontrib>Hill, S.E</creatorcontrib><creatorcontrib>Lewis, S</creatorcontrib><creatorcontrib>Schafer, B</creatorcontrib><creatorcontrib>Nobbmann, U</creatorcontrib><creatorcontrib>Harding, S.E</creatorcontrib><collection>AGRIS</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, G.A</au><au>Ang, S</au><au>Hill, S.E</au><au>Lewis, S</au><au>Schafer, B</au><au>Nobbmann, U</au><au>Harding, S.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water</atitle><jtitle>Carbohydrate polymers</jtitle><date>2008</date><risdate>2008</risdate><volume>71</volume><issue>5</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 10(6) to 1.1 x 10(7) g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 10(5) and 4.5 x 10(5) g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient(So20,w) intrinsic viscosity ([η]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the ρ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be approximately 10% from the shrinking factors, g' (=[η]branched/[η]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2008, Vol.71 (5), p.101-108 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_fao_agris_US201300844186 |
source | Elsevier ScienceDirect Journals |
subjects | chemical analysis chemical structure defusion diffusion energy-storage polysaccharides equations glucans glycogen intrinsic velocity light scattering methodology molecular weight polysaccharides sedimentation velocity shrinking factors translational diffusion viscosity water |
title | Molar mass and solution conformation of branched α(1 lead to 4), α(1 lead to 6) Glucans. Part I: Glycogens in water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-fao&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molar%20mass%20and%20solution%20conformation%20of%20branched%20%CE%B1(1%20lead%20to%204),%20%CE%B1(1%20lead%20to%206)%20Glucans.%20Part%20I:%20Glycogens%20in%20water&rft.jtitle=Carbohydrate%20polymers&rft.au=Morris,%20G.A&rft.date=2008&rft.volume=71&rft.issue=5&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/&rft_dat=%3Cfao%3EUS201300844186%3C/fao%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |