interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations

Time-dependent fluctuations in the catalysis rate (δk(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion δω₀(t). To interpret this similarity, the present analysis focuses on a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-10, Vol.104 (41), p.15982-15987
Hauptverfasser: Prakash, Meher K, Marcus, R.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15987
container_issue 41
container_start_page 15982
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Prakash, Meher K
Marcus, R.A
description Time-dependent fluctuations in the catalysis rate (δk(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion δω₀(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy (δE(t)) as a contributor to δk(t) and relate the latter to δω₀(t). The resulting relation between δk(t) and δω₀(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated δE(t) on fluctuations in the radiative component (δγ[Formula: see text](t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between δγ[Formula: see text](t) and δω₀(t) is obtained. Experimental tests will determine whether the correlation functions for δk(t), δω₀(t), and δγ[Formula: see text] are indeed similar for any enzyme. Measurements of dielectric dispersion, ε(ω), for the enzyme discussed elsewhere will provide further insight into the correlation function for δE(t). They also will determine whether fluctuations in the nonradiative component γ[Formula: see text] of the lifetime decay has a different origin, fluctuations in distance for example.
doi_str_mv 10.1073/pnas.0707859104
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300817947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449255</jstor_id><sourcerecordid>25449255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-82a6e3dc10565906c3dda70bd03786e0f114a1136e3f8eca25a4a82d0743b4643</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEokNhzQqwWCAhNe31I4m9QUIVL6kSC-ja8iR28cixg-1UDP-Ef4vTGXUom64s-37n3HvlU1XPMZxi6OjZ5FU6hQ463ggM7EG1wiBw3TIBD6sVAOlqzgg7qp6ktAEA0XB4XB3hTmBMGFtVf6zPOk5RZ5Vt8CgYZNzc5_nmmpD1SPvf21GjXmXltskmFFXWJyhNus9ROTRYY-ZU6BOk_FCqgy3i66II4xS89nlxddbobEd9Y1lajml51W4xsT0yVrvhTuun1SOjXNLP9udxdfnxw_fzz_XF109fzt9f1H2L21xzolpNhx5D0zYC2p4Og-pgPQDteKvBYMwUxrRAhutekUYxxckAHaNr1jJ6XL3b-U7zetRDX-YtW8kp2lHFrQzKyrsVb3_Iq3AtCTCCGS8Gb_YGMfycdcpytKnXzimvw5xkyxlQjqGAr_8DN2GOvixXvDAVlApxH9SR8tsFOttBfQwpRW1ux8Ugl2DIJRjyEIyiePnvlgd-n4QCoD2wKA92TDIscSM4KcjbexBpZuey_pUL-2LHblIO8RYmDWOCNE2pv9rVjQpSXUWb5OW3ZUEAXmZiHf0L9BLjGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201372070</pqid></control><display><type>article</type><title>interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Prakash, Meher K ; Marcus, R.A</creator><creatorcontrib>Prakash, Meher K ; Marcus, R.A</creatorcontrib><description>Time-dependent fluctuations in the catalysis rate (δk(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion δω₀(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy (δE(t)) as a contributor to δk(t) and relate the latter to δω₀(t). The resulting relation between δk(t) and δω₀(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated δE(t) on fluctuations in the radiative component (δγ[Formula: see text](t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between δγ[Formula: see text](t) and δω₀(t) is obtained. Experimental tests will determine whether the correlation functions for δk(t), δω₀(t), and δγ[Formula: see text] are indeed similar for any enzyme. Measurements of dielectric dispersion, ε(ω), for the enzyme discussed elsewhere will provide further insight into the correlation function for δE(t). They also will determine whether fluctuations in the nonradiative component γ[Formula: see text] of the lifetime decay has a different origin, fluctuations in distance for example.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0707859104</identifier><identifier>PMID: 17911244</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Autocorrelation ; Biological Sciences ; Biophysical Phenomena ; Biophysics ; Catalysis ; Chemical reactions ; Cholesterols ; Chromophores ; Correlation analysis ; Electric fields ; Electrostatics ; Emission spectra ; Enzymes ; Enzymes - metabolism ; Fluorescence ; Kinetics ; Models, Biological ; Oxidases ; Physical Sciences ; Solvents ; Static Electricity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-10, Vol.104 (41), p.15982-15987</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 9, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-82a6e3dc10565906c3dda70bd03786e0f114a1136e3f8eca25a4a82d0743b4643</citedby><cites>FETCH-LOGICAL-c616t-82a6e3dc10565906c3dda70bd03786e0f114a1136e3f8eca25a4a82d0743b4643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449255$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449255$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17911244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prakash, Meher K</creatorcontrib><creatorcontrib>Marcus, R.A</creatorcontrib><title>interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Time-dependent fluctuations in the catalysis rate (δk(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion δω₀(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy (δE(t)) as a contributor to δk(t) and relate the latter to δω₀(t). The resulting relation between δk(t) and δω₀(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated δE(t) on fluctuations in the radiative component (δγ[Formula: see text](t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between δγ[Formula: see text](t) and δω₀(t) is obtained. Experimental tests will determine whether the correlation functions for δk(t), δω₀(t), and δγ[Formula: see text] are indeed similar for any enzyme. Measurements of dielectric dispersion, ε(ω), for the enzyme discussed elsewhere will provide further insight into the correlation function for δE(t). They also will determine whether fluctuations in the nonradiative component γ[Formula: see text] of the lifetime decay has a different origin, fluctuations in distance for example.</description><subject>Autocorrelation</subject><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Cholesterols</subject><subject>Chromophores</subject><subject>Correlation analysis</subject><subject>Electric fields</subject><subject>Electrostatics</subject><subject>Emission spectra</subject><subject>Enzymes</subject><subject>Enzymes - metabolism</subject><subject>Fluorescence</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Oxidases</subject><subject>Physical Sciences</subject><subject>Solvents</subject><subject>Static Electricity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhSMEokNhzQqwWCAhNe31I4m9QUIVL6kSC-ja8iR28cixg-1UDP-Ef4vTGXUom64s-37n3HvlU1XPMZxi6OjZ5FU6hQ463ggM7EG1wiBw3TIBD6sVAOlqzgg7qp6ktAEA0XB4XB3hTmBMGFtVf6zPOk5RZ5Vt8CgYZNzc5_nmmpD1SPvf21GjXmXltskmFFXWJyhNus9ROTRYY-ZU6BOk_FCqgy3i66II4xS89nlxddbobEd9Y1lajml51W4xsT0yVrvhTuun1SOjXNLP9udxdfnxw_fzz_XF109fzt9f1H2L21xzolpNhx5D0zYC2p4Og-pgPQDteKvBYMwUxrRAhutekUYxxckAHaNr1jJ6XL3b-U7zetRDX-YtW8kp2lHFrQzKyrsVb3_Iq3AtCTCCGS8Gb_YGMfycdcpytKnXzimvw5xkyxlQjqGAr_8DN2GOvixXvDAVlApxH9SR8tsFOttBfQwpRW1ux8Ugl2DIJRjyEIyiePnvlgd-n4QCoD2wKA92TDIscSM4KcjbexBpZuey_pUL-2LHblIO8RYmDWOCNE2pv9rVjQpSXUWb5OW3ZUEAXmZiHf0L9BLjGw</recordid><startdate>20071009</startdate><enddate>20071009</enddate><creator>Prakash, Meher K</creator><creator>Marcus, R.A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071009</creationdate><title>interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations</title><author>Prakash, Meher K ; Marcus, R.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-82a6e3dc10565906c3dda70bd03786e0f114a1136e3f8eca25a4a82d0743b4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Autocorrelation</topic><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Cholesterols</topic><topic>Chromophores</topic><topic>Correlation analysis</topic><topic>Electric fields</topic><topic>Electrostatics</topic><topic>Emission spectra</topic><topic>Enzymes</topic><topic>Enzymes - metabolism</topic><topic>Fluorescence</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Oxidases</topic><topic>Physical Sciences</topic><topic>Solvents</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prakash, Meher K</creatorcontrib><creatorcontrib>Marcus, R.A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prakash, Meher K</au><au>Marcus, R.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-10-09</date><risdate>2007</risdate><volume>104</volume><issue>41</issue><spage>15982</spage><epage>15987</epage><pages>15982-15987</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Time-dependent fluctuations in the catalysis rate (δk(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion δω₀(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy (δE(t)) as a contributor to δk(t) and relate the latter to δω₀(t). The resulting relation between δk(t) and δω₀(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated δE(t) on fluctuations in the radiative component (δγ[Formula: see text](t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between δγ[Formula: see text](t) and δω₀(t) is obtained. Experimental tests will determine whether the correlation functions for δk(t), δω₀(t), and δγ[Formula: see text] are indeed similar for any enzyme. Measurements of dielectric dispersion, ε(ω), for the enzyme discussed elsewhere will provide further insight into the correlation function for δE(t). They also will determine whether fluctuations in the nonradiative component γ[Formula: see text] of the lifetime decay has a different origin, fluctuations in distance for example.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17911244</pmid><doi>10.1073/pnas.0707859104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-10, Vol.104 (41), p.15982-15987
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201300817947
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Autocorrelation
Biological Sciences
Biophysical Phenomena
Biophysics
Catalysis
Chemical reactions
Cholesterols
Chromophores
Correlation analysis
Electric fields
Electrostatics
Emission spectra
Enzymes
Enzymes - metabolism
Fluorescence
Kinetics
Models, Biological
Oxidases
Physical Sciences
Solvents
Static Electricity
title interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=interpretation%20of%20fluctuations%20in%20enzyme%20catalysis%20rate,%20spectral%20diffusion,%20and%20radiative%20component%20of%20lifetimes%20in%20terms%20of%20electric%20field%20fluctuations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Prakash,%20Meher%20K&rft.date=2007-10-09&rft.volume=104&rft.issue=41&rft.spage=15982&rft.epage=15987&rft.pages=15982-15987&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0707859104&rft_dat=%3Cjstor_fao_a%3E25449255%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201372070&rft_id=info:pmid/17911244&rft_jstor_id=25449255&rfr_iscdi=true