Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor
The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (25), p.10691-10696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10696 |
---|---|
container_issue | 25 |
container_start_page | 10691 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Tansky, Morris F Pothoulakis, Charalabos Leeman, Susan E |
description | The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular. |
doi_str_mv | 10.1073/pnas.0703394104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300785066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25435994</jstor_id><sourcerecordid>25435994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAmIOCBxSDv-ji9IqKKAVMEBera83snW26y9tRPE_vc4yqoLXHqyrPeb55l5rqqXBM4IKHa-CzafgQLGNCfAH1ULApo0kmt4XC0AqGpaTvlJ9SznDQBo0cLT6oQoIRlr9aJaXo7BDT4G29cuhox3IwaHuY5dbfsBk53E6fat6X24xVW97vcu5n0_K9kPEx3q4QbrgGOKtz74UJM6ocPdENPz6kln-4wvDudpdX356efFl-bq--evFx-vGicpDA06rkSrqcMWrWbdCpmlrbQd6zpU0DG5AiUsR9BLawVfogUqHQjKKGNUsNPqw-y7G5dbXDkMQ7K92SW_tWlvovXmXyX4G7OOvwzRUgjFi8G7g0GKZQ15MFufHfa9DRjHbBRIphTXD4IUqGiFaAv49j9wE8dUdj0xhBHBFCnQ-Qy5FHNO2N23TMBMKZspZXNMuVS8_nvSI3-ItQD1AZgqj3bcUFEOqadX3z-AmG7syw_4PRT21cxucsnzHqaCM6H11M-bWe9sNHadfDbXP6YBAVQrQEr2Bxxu0G4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201315371</pqid></control><display><type>article</type><title>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tansky, Morris F ; Pothoulakis, Charalabos ; Leeman, Susan E</creator><creatorcontrib>Tansky, Morris F ; Pothoulakis, Charalabos ; Leeman, Susan E</creatorcontrib><description>The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703394104</identifier><identifier>PMID: 17563389</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Antibodies ; Binding sites ; Biochemistry ; Biological Sciences ; Cell Line ; Cell lines ; Cell membranes ; Enzyme Activation - genetics ; Gels ; Genetic Vectors ; Glycine - metabolism ; Glycoproteins ; Glycosylation ; Humans ; Immunohistochemistry ; Interleukin-8 - secretion ; Internalization ; JNK Mitogen-Activated Protein Kinases - metabolism ; Kinetics ; Lentivirus - genetics ; Ligands ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; Mutation ; Neurokinin A - metabolism ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Receptors ; Receptors, Neurokinin-1 - genetics ; Receptors, Neurokinin-1 - metabolism ; Secretion ; Substance P - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (25), p.10691-10696</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 19, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</citedby><cites>FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25435994$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25435994$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17563389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tansky, Morris F</creatorcontrib><creatorcontrib>Pothoulakis, Charalabos</creatorcontrib><creatorcontrib>Leeman, Susan E</creatorcontrib><title>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.</description><subject>Amino Acid Substitution</subject><subject>Antibodies</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell membranes</subject><subject>Enzyme Activation - genetics</subject><subject>Gels</subject><subject>Genetic Vectors</subject><subject>Glycine - metabolism</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Interleukin-8 - secretion</subject><subject>Internalization</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>Kinetics</subject><subject>Lentivirus - genetics</subject><subject>Ligands</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Mutation</subject><subject>Neurokinin A - metabolism</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Receptors</subject><subject>Receptors, Neurokinin-1 - genetics</subject><subject>Receptors, Neurokinin-1 - metabolism</subject><subject>Secretion</subject><subject>Substance P - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAmIOCBxSDv-ji9IqKKAVMEBera83snW26y9tRPE_vc4yqoLXHqyrPeb55l5rqqXBM4IKHa-CzafgQLGNCfAH1ULApo0kmt4XC0AqGpaTvlJ9SznDQBo0cLT6oQoIRlr9aJaXo7BDT4G29cuhox3IwaHuY5dbfsBk53E6fat6X24xVW97vcu5n0_K9kPEx3q4QbrgGOKtz74UJM6ocPdENPz6kln-4wvDudpdX356efFl-bq--evFx-vGicpDA06rkSrqcMWrWbdCpmlrbQd6zpU0DG5AiUsR9BLawVfogUqHQjKKGNUsNPqw-y7G5dbXDkMQ7K92SW_tWlvovXmXyX4G7OOvwzRUgjFi8G7g0GKZQ15MFufHfa9DRjHbBRIphTXD4IUqGiFaAv49j9wE8dUdj0xhBHBFCnQ-Qy5FHNO2N23TMBMKZspZXNMuVS8_nvSI3-ItQD1AZgqj3bcUFEOqadX3z-AmG7syw_4PRT21cxucsnzHqaCM6H11M-bWe9sNHadfDbXP6YBAVQrQEr2Bxxu0G4</recordid><startdate>20070619</startdate><enddate>20070619</enddate><creator>Tansky, Morris F</creator><creator>Pothoulakis, Charalabos</creator><creator>Leeman, Susan E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070619</creationdate><title>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</title><author>Tansky, Morris F ; Pothoulakis, Charalabos ; Leeman, Susan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Substitution</topic><topic>Antibodies</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell membranes</topic><topic>Enzyme Activation - genetics</topic><topic>Gels</topic><topic>Genetic Vectors</topic><topic>Glycine - metabolism</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Interleukin-8 - secretion</topic><topic>Internalization</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>Kinetics</topic><topic>Lentivirus - genetics</topic><topic>Ligands</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Mutation</topic><topic>Neurokinin A - metabolism</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Receptors</topic><topic>Receptors, Neurokinin-1 - genetics</topic><topic>Receptors, Neurokinin-1 - metabolism</topic><topic>Secretion</topic><topic>Substance P - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tansky, Morris F</creatorcontrib><creatorcontrib>Pothoulakis, Charalabos</creatorcontrib><creatorcontrib>Leeman, Susan E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tansky, Morris F</au><au>Pothoulakis, Charalabos</au><au>Leeman, Susan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-19</date><risdate>2007</risdate><volume>104</volume><issue>25</issue><spage>10691</spage><epage>10696</epage><pages>10691-10696</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17563389</pmid><doi>10.1073/pnas.0703394104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (25), p.10691-10696 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_fao_agris_US201300785066 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Antibodies Binding sites Biochemistry Biological Sciences Cell Line Cell lines Cell membranes Enzyme Activation - genetics Gels Genetic Vectors Glycine - metabolism Glycoproteins Glycosylation Humans Immunohistochemistry Interleukin-8 - secretion Internalization JNK Mitogen-Activated Protein Kinases - metabolism Kinetics Lentivirus - genetics Ligands Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - metabolism Mutation Neurokinin A - metabolism p38 Mitogen-Activated Protein Kinases - metabolism Phosphorylation Receptors Receptors, Neurokinin-1 - genetics Receptors, Neurokinin-1 - metabolism Secretion Substance P - metabolism |
title | Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20consequences%20of%20alteration%20of%20N-linked%20glycosylation%20sites%20on%20the%20neurokinin%201%20receptor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tansky,%20Morris%20F&rft.date=2007-06-19&rft.volume=104&rft.issue=25&rft.spage=10691&rft.epage=10696&rft.pages=10691-10696&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703394104&rft_dat=%3Cjstor_fao_a%3E25435994%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201315371&rft_id=info:pmid/17563389&rft_jstor_id=25435994&rfr_iscdi=true |