Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor

The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (25), p.10691-10696
Hauptverfasser: Tansky, Morris F, Pothoulakis, Charalabos, Leeman, Susan E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10696
container_issue 25
container_start_page 10691
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Tansky, Morris F
Pothoulakis, Charalabos
Leeman, Susan E
description The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.
doi_str_mv 10.1073/pnas.0703394104
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300785066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25435994</jstor_id><sourcerecordid>25435994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAmIOCBxSDv-ji9IqKKAVMEBera83snW26y9tRPE_vc4yqoLXHqyrPeb55l5rqqXBM4IKHa-CzafgQLGNCfAH1ULApo0kmt4XC0AqGpaTvlJ9SznDQBo0cLT6oQoIRlr9aJaXo7BDT4G29cuhox3IwaHuY5dbfsBk53E6fat6X24xVW97vcu5n0_K9kPEx3q4QbrgGOKtz74UJM6ocPdENPz6kln-4wvDudpdX356efFl-bq--evFx-vGicpDA06rkSrqcMWrWbdCpmlrbQd6zpU0DG5AiUsR9BLawVfogUqHQjKKGNUsNPqw-y7G5dbXDkMQ7K92SW_tWlvovXmXyX4G7OOvwzRUgjFi8G7g0GKZQ15MFufHfa9DRjHbBRIphTXD4IUqGiFaAv49j9wE8dUdj0xhBHBFCnQ-Qy5FHNO2N23TMBMKZspZXNMuVS8_nvSI3-ItQD1AZgqj3bcUFEOqadX3z-AmG7syw_4PRT21cxucsnzHqaCM6H11M-bWe9sNHadfDbXP6YBAVQrQEr2Bxxu0G4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201315371</pqid></control><display><type>article</type><title>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tansky, Morris F ; Pothoulakis, Charalabos ; Leeman, Susan E</creator><creatorcontrib>Tansky, Morris F ; Pothoulakis, Charalabos ; Leeman, Susan E</creatorcontrib><description>The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703394104</identifier><identifier>PMID: 17563389</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Antibodies ; Binding sites ; Biochemistry ; Biological Sciences ; Cell Line ; Cell lines ; Cell membranes ; Enzyme Activation - genetics ; Gels ; Genetic Vectors ; Glycine - metabolism ; Glycoproteins ; Glycosylation ; Humans ; Immunohistochemistry ; Interleukin-8 - secretion ; Internalization ; JNK Mitogen-Activated Protein Kinases - metabolism ; Kinetics ; Lentivirus - genetics ; Ligands ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; Mutation ; Neurokinin A - metabolism ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Receptors ; Receptors, Neurokinin-1 - genetics ; Receptors, Neurokinin-1 - metabolism ; Secretion ; Substance P - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (25), p.10691-10696</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 19, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</citedby><cites>FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25435994$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25435994$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17563389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tansky, Morris F</creatorcontrib><creatorcontrib>Pothoulakis, Charalabos</creatorcontrib><creatorcontrib>Leeman, Susan E</creatorcontrib><title>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.</description><subject>Amino Acid Substitution</subject><subject>Antibodies</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell membranes</subject><subject>Enzyme Activation - genetics</subject><subject>Gels</subject><subject>Genetic Vectors</subject><subject>Glycine - metabolism</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Interleukin-8 - secretion</subject><subject>Internalization</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>Kinetics</subject><subject>Lentivirus - genetics</subject><subject>Ligands</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Mutation</subject><subject>Neurokinin A - metabolism</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Receptors</subject><subject>Receptors, Neurokinin-1 - genetics</subject><subject>Receptors, Neurokinin-1 - metabolism</subject><subject>Secretion</subject><subject>Substance P - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAmIOCBxSDv-ji9IqKKAVMEBera83snW26y9tRPE_vc4yqoLXHqyrPeb55l5rqqXBM4IKHa-CzafgQLGNCfAH1ULApo0kmt4XC0AqGpaTvlJ9SznDQBo0cLT6oQoIRlr9aJaXo7BDT4G29cuhox3IwaHuY5dbfsBk53E6fat6X24xVW97vcu5n0_K9kPEx3q4QbrgGOKtz74UJM6ocPdENPz6kln-4wvDudpdX356efFl-bq--evFx-vGicpDA06rkSrqcMWrWbdCpmlrbQd6zpU0DG5AiUsR9BLawVfogUqHQjKKGNUsNPqw-y7G5dbXDkMQ7K92SW_tWlvovXmXyX4G7OOvwzRUgjFi8G7g0GKZQ15MFufHfa9DRjHbBRIphTXD4IUqGiFaAv49j9wE8dUdj0xhBHBFCnQ-Qy5FHNO2N23TMBMKZspZXNMuVS8_nvSI3-ItQD1AZgqj3bcUFEOqadX3z-AmG7syw_4PRT21cxucsnzHqaCM6H11M-bWe9sNHadfDbXP6YBAVQrQEr2Bxxu0G4</recordid><startdate>20070619</startdate><enddate>20070619</enddate><creator>Tansky, Morris F</creator><creator>Pothoulakis, Charalabos</creator><creator>Leeman, Susan E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070619</creationdate><title>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</title><author>Tansky, Morris F ; Pothoulakis, Charalabos ; Leeman, Susan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-ec475892ce8ea93fde3a286af3ffe70f36d075a4e09baa54bea026c0523233253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Substitution</topic><topic>Antibodies</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell membranes</topic><topic>Enzyme Activation - genetics</topic><topic>Gels</topic><topic>Genetic Vectors</topic><topic>Glycine - metabolism</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Interleukin-8 - secretion</topic><topic>Internalization</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>Kinetics</topic><topic>Lentivirus - genetics</topic><topic>Ligands</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Mutation</topic><topic>Neurokinin A - metabolism</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Receptors</topic><topic>Receptors, Neurokinin-1 - genetics</topic><topic>Receptors, Neurokinin-1 - metabolism</topic><topic>Secretion</topic><topic>Substance P - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tansky, Morris F</creatorcontrib><creatorcontrib>Pothoulakis, Charalabos</creatorcontrib><creatorcontrib>Leeman, Susan E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tansky, Morris F</au><au>Pothoulakis, Charalabos</au><au>Leeman, Susan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-19</date><risdate>2007</risdate><volume>104</volume><issue>25</issue><spage>10691</spage><epage>10696</epage><pages>10691-10696</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The neurokinin 1 receptor (NK1R), a G protein-coupled receptor involved in diverse functions including pain and inflammation, has two putative N-linked glycosylation sites, Asn-14 and Asn-18. We studied the role of N-linked glycosylation in the functioning of the NK1R by constructing three receptor mutants: two single mutants (Asn [rightward arrow] Gln-14 and Asn [rightward arrow] Gln-18) and a double mutant, lacking both glycosylation sites. Using a lentiviral transfection system, the mutants were stably transfected into NCM 460 cells, a nontransformed human colonic epithelial cell line. We observed that the magnitude of glycosylation as estimated by changes in gel migration depends on the number of glycosylation sites available, with the wild-type receptor containing the greatest amount of glycosylation. All mutant receptors were able to bind to substance P and neurokinin A ligand with similar affinities; however, the double mutant, nonglycosylated NK1R showed only half the Bmax of the wild-type NK1R. In terms of receptor function, the ablation of both N-linked glycosylation sites did not have a profound effect on the receptors' abilities to activate the MAP kinase families (p42/p44, JNK, and p38), but did affect SP-induced IL-8 secretion. All mutants were able to internalize, but the kinetics of internalization of the double mutant receptor was more rapid, when compared with wild-type NK1R. Therefore, glycosylation of NK1R may stabilize the receptor in the plasma membrane. These results contribute to the ongoing elucidation of the role of glycosylation in G protein-coupled receptors and the study of the neurokinin receptors in particular.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17563389</pmid><doi>10.1073/pnas.0703394104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (25), p.10691-10696
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201300785066
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Antibodies
Binding sites
Biochemistry
Biological Sciences
Cell Line
Cell lines
Cell membranes
Enzyme Activation - genetics
Gels
Genetic Vectors
Glycine - metabolism
Glycoproteins
Glycosylation
Humans
Immunohistochemistry
Interleukin-8 - secretion
Internalization
JNK Mitogen-Activated Protein Kinases - metabolism
Kinetics
Lentivirus - genetics
Ligands
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - metabolism
Mutation
Neurokinin A - metabolism
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Receptors
Receptors, Neurokinin-1 - genetics
Receptors, Neurokinin-1 - metabolism
Secretion
Substance P - metabolism
title Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20consequences%20of%20alteration%20of%20N-linked%20glycosylation%20sites%20on%20the%20neurokinin%201%20receptor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tansky,%20Morris%20F&rft.date=2007-06-19&rft.volume=104&rft.issue=25&rft.spage=10691&rft.epage=10696&rft.pages=10691-10696&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703394104&rft_dat=%3Cjstor_fao_a%3E25435994%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201315371&rft_id=info:pmid/17563389&rft_jstor_id=25435994&rfr_iscdi=true