Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms

Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (1), p.353-358
Hauptverfasser: Ting, Jonathan T, Kelley, Brooke G, Lambert, Talley J, Cook, David G, Sullivan, Jane M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 1
container_start_page 353
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Ting, Jonathan T
Kelley, Brooke G
Lambert, Talley J
Cook, David G
Sullivan, Jane M
description Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Aβ because expression of mutant APP incapable of producing Aβ did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Aβ-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.
doi_str_mv 10.1073/pnas.0608807104
format Article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_fao_agris_US201300737133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426101</jstor_id><sourcerecordid>25426101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-bd1063344ccf94592ad433977260f0dbf6a795ccbccc5664592329dcc9840f263</originalsourceid><addsrcrecordid>eNptkc1v1DAQxSMEotvCmRMQceCWdvyZ5FKpqiggVeIAPVuO42y8SuxgO9XuiX8dh13tFsTJo5nfPM_Ty7I3CC4RlORqsjJcAoeqghIBfZatENSo4LSG59kKAJdFRTE9y85D2ABAzSp4mZ2hElWMIrbKft2Mu8GZNp-8VrMPzqfKRW1s7h6119vUD8E4m7f6T6lDrrfKRBmd3-XRSxtGsydi79287vPGxX7RCzsrp2hULm3SdyEeG6NWvbQmjOFV9qKTQ9CvD-9F9nD36cftl-L-2-evtzf3hWIViUXTIuCEUKpUV1NWY9lSQuqyxBw6aJuOy7JmSjVKKcb5QhBct0rVFYUOc3KRXe91p7kZdau0TacPYvJmlH4nnDTi74k1vVi7R4FKziinSeDjQcC7n7MOUSTbSg-DtNrNQfCK1Iiz5acP_4AbN3ubzAkMiAJQDAm62kPKuxC87o6XIBBLsmJJVpySTRvvnho48YcoE_D2ACybJzkqkCCMPDHw37no5mGIehtPQpuQMj6SmFHMEaA0f7-fd9IJufYmiIfvyRqBdHeJCCG_AcFQznQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201400420</pqid></control><display><type>article</type><title>Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ting, Jonathan T ; Kelley, Brooke G ; Lambert, Talley J ; Cook, David G ; Sullivan, Jane M</creator><creatorcontrib>Ting, Jonathan T ; Kelley, Brooke G ; Lambert, Talley J ; Cook, David G ; Sullivan, Jane M</creatorcontrib><description>Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Aβ because expression of mutant APP incapable of producing Aβ did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Aβ-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0608807104</identifier><identifier>PMID: 17185415</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action potentials ; Alzheimer's disease ; Alzheimers disease ; Amyloid beta-Peptides - biosynthesis ; Amyloid beta-Protein Precursor - physiology ; Amyloids ; Animals ; Biological Sciences ; Cells, Cultured ; Depressive disorders ; Fluorescence ; Gene expression ; Genetic variation ; Hippocampus - physiology ; Mice ; Neurons ; Neuroscience ; Peptides ; Proteins ; Receptors, AMPA - physiology ; Synapses ; Synaptic transmission ; Synaptic Transmission - physiology ; Synaptic Vesicles - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.353-358</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 2, 2007</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-bd1063344ccf94592ad433977260f0dbf6a795ccbccc5664592329dcc9840f263</citedby><cites>FETCH-LOGICAL-c583t-bd1063344ccf94592ad433977260f0dbf6a795ccbccc5664592329dcc9840f263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426101$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426101$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17185415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Jonathan T</creatorcontrib><creatorcontrib>Kelley, Brooke G</creatorcontrib><creatorcontrib>Lambert, Talley J</creatorcontrib><creatorcontrib>Cook, David G</creatorcontrib><creatorcontrib>Sullivan, Jane M</creatorcontrib><title>Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Aβ because expression of mutant APP incapable of producing Aβ did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Aβ-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.</description><subject>Action potentials</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amyloid beta-Peptides - biosynthesis</subject><subject>Amyloid beta-Protein Precursor - physiology</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cells, Cultured</subject><subject>Depressive disorders</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Genetic variation</subject><subject>Hippocampus - physiology</subject><subject>Mice</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Receptors, AMPA - physiology</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1v1DAQxSMEotvCmRMQceCWdvyZ5FKpqiggVeIAPVuO42y8SuxgO9XuiX8dh13tFsTJo5nfPM_Ty7I3CC4RlORqsjJcAoeqghIBfZatENSo4LSG59kKAJdFRTE9y85D2ABAzSp4mZ2hElWMIrbKft2Mu8GZNp-8VrMPzqfKRW1s7h6119vUD8E4m7f6T6lDrrfKRBmd3-XRSxtGsydi79287vPGxX7RCzsrp2hULm3SdyEeG6NWvbQmjOFV9qKTQ9CvD-9F9nD36cftl-L-2-evtzf3hWIViUXTIuCEUKpUV1NWY9lSQuqyxBw6aJuOy7JmSjVKKcb5QhBct0rVFYUOc3KRXe91p7kZdau0TacPYvJmlH4nnDTi74k1vVi7R4FKziinSeDjQcC7n7MOUSTbSg-DtNrNQfCK1Iiz5acP_4AbN3ubzAkMiAJQDAm62kPKuxC87o6XIBBLsmJJVpySTRvvnho48YcoE_D2ACybJzkqkCCMPDHw37no5mGIehtPQpuQMj6SmFHMEaA0f7-fd9IJufYmiIfvyRqBdHeJCCG_AcFQznQ</recordid><startdate>20070102</startdate><enddate>20070102</enddate><creator>Ting, Jonathan T</creator><creator>Kelley, Brooke G</creator><creator>Lambert, Talley J</creator><creator>Cook, David G</creator><creator>Sullivan, Jane M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070102</creationdate><title>Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms</title><author>Ting, Jonathan T ; Kelley, Brooke G ; Lambert, Talley J ; Cook, David G ; Sullivan, Jane M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-bd1063344ccf94592ad433977260f0dbf6a795ccbccc5664592329dcc9840f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action potentials</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amyloid beta-Peptides - biosynthesis</topic><topic>Amyloid beta-Protein Precursor - physiology</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cells, Cultured</topic><topic>Depressive disorders</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Genetic variation</topic><topic>Hippocampus - physiology</topic><topic>Mice</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Receptors, AMPA - physiology</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Jonathan T</creatorcontrib><creatorcontrib>Kelley, Brooke G</creatorcontrib><creatorcontrib>Lambert, Talley J</creatorcontrib><creatorcontrib>Cook, David G</creatorcontrib><creatorcontrib>Sullivan, Jane M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Jonathan T</au><au>Kelley, Brooke G</au><au>Lambert, Talley J</au><au>Cook, David G</au><au>Sullivan, Jane M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-01-02</date><risdate>2007</risdate><volume>104</volume><issue>1</issue><spage>353</spage><epage>358</epage><pages>353-358</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Aβ because expression of mutant APP incapable of producing Aβ did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Aβ-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17185415</pmid><doi>10.1073/pnas.0608807104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.353-358
issn 0027-8424
1091-6490
language eng
recordid cdi_fao_agris_US201300737133
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Action potentials
Alzheimer's disease
Alzheimers disease
Amyloid beta-Peptides - biosynthesis
Amyloid beta-Protein Precursor - physiology
Amyloids
Animals
Biological Sciences
Cells, Cultured
Depressive disorders
Fluorescence
Gene expression
Genetic variation
Hippocampus - physiology
Mice
Neurons
Neuroscience
Peptides
Proteins
Receptors, AMPA - physiology
Synapses
Synaptic transmission
Synaptic Transmission - physiology
Synaptic Vesicles - physiology
title Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloid%20precursor%20protein%20overexpression%20depresses%20excitatory%20transmission%20through%20both%20presynaptic%20and%20postsynaptic%20mechanisms&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ting,%20Jonathan%20T&rft.date=2007-01-02&rft.volume=104&rft.issue=1&rft.spage=353&rft.epage=358&rft.pages=353-358&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0608807104&rft_dat=%3Cjstor_fao_a%3E25426101%3C/jstor_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201400420&rft_id=info:pmid/17185415&rft_jstor_id=25426101&rfr_iscdi=true