A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester
Expression of virulence factors in Ralstonia solanacearum is controlled by a complex regulatory network, at the center of which is PhcA, a LysR family transcriptional regulator. We report here that expression phcA and production of PhcA-regulated virulence factors are affected by products of the put...
Gespeichert in:
Veröffentlicht in: | Journal of Bacteriology 1997-06, Vol.179 (11), p.3639-3648 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3648 |
---|---|
container_issue | 11 |
container_start_page | 3639 |
container_title | Journal of Bacteriology |
container_volume | 179 |
creator | Clough, S.J. (University of Illinois, Urbana, IL.) Lee, K.E Schell, M.A Denny, T.P |
description | Expression of virulence factors in Ralstonia solanacearum is controlled by a complex regulatory network, at the center of which is PhcA, a LysR family transcriptional regulator. We report here that expression phcA and production of PhcA-regulated virulence factors are affected by products of the putative operon phcBSR(Q). phcB is required for production of an extracellular factor (EF), tentatively identified as the fatty acid derivative 3-hydroxypalmitic acid methyl ester (3-OH PAME), but a biochemical function for PhcB could not be deduced from DNA sequence analysis. The other genes in the putative operon are predicted to encode proteins homologous to members of two-component signal transduction systems: PhcS has amino acid similarity to histidine kinase sensors, whereas PhcR and OrfQ are similar to response regulators. PhcR is quite unusual because its putative output domain strongly resembles the histidine kinase domain of a sensor protein. Production of the PhcA-regulated factors exopolysaccharide I, endoglucanase, and pectin methyl esterase was reduced 10- to 100-fold only in mutants with a nonpolar insertion in phcB [which express phcSR(Q) in the absence of the EF]; simultaneously, expression of phcA was reduced fivefold. Both a wild-type phenotype and phcA expression were restored by addition of 3-OH PAME to growing cultures. Mutants with polar insertions in phcB or lacking the entire phcBSR(Q) region produced wild-type levels of PhcA-regulated virulence factors. The genetic data suggest that PhcS and PhcR function together to regulate expression of phcA, but the biochemical mechanism for this is unclear. At low levels of the EF, it is likely that PhcS phosphorylates PhcR, and then PhcR interacts either with PhcA (which is required for full expression of phcA) or an unknown component of the signal cascade to inhibit expression of phcA. When the EF reaches a threshold concentration, we suggest that it reduces the ability of PhcS to phosphorylate PhcR |
doi_str_mv | 10.1128/jb.179.11.3639-3648.1997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US1997048933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15964207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-ddadff27f130b50aef155a72bcd66a32563f118d5d69e702b302f1431fd3d1ad3</originalsourceid><addsrcrecordid>eNqFUstuFDEQHCFQWAKfgGRxQOEwi9uelw8cVhEvKRIRkLPl8WPHq_F4sT0J-0t8JR6ySiAXTm6pq6qr21UUCPAagHRvd_0aWpbrNW0oK2lTdWtgrH1UrACzrqxrih8XK4wJlAwYfVo8i3GHMVRVTU6KEwYtVACr4tcGpRtfSu_2ftJTQvEQk3bITuirGGPykxXo7DLqWXnnJxHfoOhHMQmpRZgdcl7No0g6on3IpUzWT8gbdDnITRn09k9ToWsb5lFPUiMjZPIhLgOCjnlo1Ch5RMvhoIL_ediL0dlkJRLSKuR0Gg4j0tlTeF48MdmSfnF8T4urD--_n38qL758_Hy-uShlU5FUKiWUMaQ1QHFfY6EN1LVoSS9V0whK6oYagE7VqmG6xaSnmBioKBhFFQhFT4t3t7r7uXdayXyVIEa-D9aJcOBeWP5vZ7ID3_prnn8Eapb5r4_84H_M2Tp3Nko95qtpP0feMlxlF-S_wCyWN8JtBr56ANz5OUz5CJyQFmcYNBnU3YJk8DEGbe4cA-ZLaPiuXyzmmi-h4Uto-BKaTH3598Z3xGNK7ucPdjvc2KC5iO6B3L2IEZ6LbbCRX31b5HHVMUrpb4gA164</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227059616</pqid></control><display><type>article</type><title>A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Clough, S.J. (University of Illinois, Urbana, IL.) ; Lee, K.E ; Schell, M.A ; Denny, T.P</creator><creatorcontrib>Clough, S.J. (University of Illinois, Urbana, IL.) ; Lee, K.E ; Schell, M.A ; Denny, T.P</creatorcontrib><description>Expression of virulence factors in Ralstonia solanacearum is controlled by a complex regulatory network, at the center of which is PhcA, a LysR family transcriptional regulator. We report here that expression phcA and production of PhcA-regulated virulence factors are affected by products of the putative operon phcBSR(Q). phcB is required for production of an extracellular factor (EF), tentatively identified as the fatty acid derivative 3-hydroxypalmitic acid methyl ester (3-OH PAME), but a biochemical function for PhcB could not be deduced from DNA sequence analysis. The other genes in the putative operon are predicted to encode proteins homologous to members of two-component signal transduction systems: PhcS has amino acid similarity to histidine kinase sensors, whereas PhcR and OrfQ are similar to response regulators. PhcR is quite unusual because its putative output domain strongly resembles the histidine kinase domain of a sensor protein. Production of the PhcA-regulated factors exopolysaccharide I, endoglucanase, and pectin methyl esterase was reduced 10- to 100-fold only in mutants with a nonpolar insertion in phcB [which express phcSR(Q) in the absence of the EF]; simultaneously, expression of phcA was reduced fivefold. Both a wild-type phenotype and phcA expression were restored by addition of 3-OH PAME to growing cultures. Mutants with polar insertions in phcB or lacking the entire phcBSR(Q) region produced wild-type levels of PhcA-regulated virulence factors. The genetic data suggest that PhcS and PhcR function together to regulate expression of phcA, but the biochemical mechanism for this is unclear. At low levels of the EF, it is likely that PhcS phosphorylates PhcR, and then PhcR interacts either with PhcA (which is required for full expression of phcA) or an unknown component of the signal cascade to inhibit expression of phcA. When the EF reaches a threshold concentration, we suggest that it reduces the ability of PhcS to phosphorylate PhcR</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>EISSN: 1067-8832</identifier><identifier>DOI: 10.1128/jb.179.11.3639-3648.1997</identifier><identifier>PMID: 9171411</identifier><identifier>CODEN: JOBAAY</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>ACIDE GRAS ; ACIDOS GRASOS ; ADN ; Amino Acid Sequence ; AMINO ACID SEQUENCES ; BACTERIA ; Bacterial Proteins ; Bacteriology ; BINDING PROTEINS ; CELLULASE ; CELULASA ; CHEMICAL COMPOSITION ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; DNA ; DNA-Binding Proteins - genetics ; ESTER ; ESTERES ; ESTERS ; EXPRESION GENICA ; EXPRESSION DES GENES ; EXTRACELLULAR FACTOR ; FACTEUR DE TRANSCRIPTION ; FACTORES DE TRANSCRIPCION ; FATTY ACIDS ; GENBANK/U6193[SIC] ; GENE ; GENE EXPRESSION ; Gene Expression Regulation, Bacterial - drug effects ; GENES ; Genes, Bacterial ; GENETIC REGULATION ; GENETICA ; GENETICS ; GENETIQUE ; Gram-Negative Aerobic Bacteria - genetics ; Gram-Negative Aerobic Bacteria - pathogenicity ; HISTIDINE KINASE ; MOLECULAR SEQUENCE DATA ; MUTACION ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION ; NUCLEOTIDE SEQUENCE ; Palmitates - pharmacology ; PECTINESTERASAS ; PECTINESTERASE ; PHCB GENE ; PHCR GENE ; PHCS GENE ; POLISACARIDOS ; POLYHOLOSIDE ; POLYSACCHARIDES ; PROTEIN KINASE ; PROTEIN SYNTHESIS ; PROTEINA QUINASA ; PROTEINAS ; PROTEINAS AGLUTINANTES ; PROTEINE ; PROTEINE DE LIAISON ; PROTEINE KINASE ; PROTEINS ; PSEUDOMONACEAE ; Ralstonia solanacearum ; RALSTONIAN SOLANACEARUM ; REGULATORY GENES ; SECUENCIA NUCLEOTIDICA ; Sequence Analysis ; SEQUENCE NUCLEOTIDIQUE ; SINTESIS DE PROTEINAS ; STRUCTURAL GENES ; SYNTHESE PROTEIQUE ; TRANSCRIPTION FACTORS ; Transcription Factors - genetics ; Virulence - genetics ; Viruses</subject><ispartof>Journal of Bacteriology, 1997-06, Vol.179 (11), p.3639-3648</ispartof><rights>Copyright American Society for Microbiology Jun 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-ddadff27f130b50aef155a72bcd66a32563f118d5d69e702b302f1431fd3d1ad3</citedby><cites>FETCH-LOGICAL-c642t-ddadff27f130b50aef155a72bcd66a32563f118d5d69e702b302f1431fd3d1ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC179159/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC179159/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9171411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clough, S.J. (University of Illinois, Urbana, IL.)</creatorcontrib><creatorcontrib>Lee, K.E</creatorcontrib><creatorcontrib>Schell, M.A</creatorcontrib><creatorcontrib>Denny, T.P</creatorcontrib><title>A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester</title><title>Journal of Bacteriology</title><addtitle>J Bacteriol</addtitle><description>Expression of virulence factors in Ralstonia solanacearum is controlled by a complex regulatory network, at the center of which is PhcA, a LysR family transcriptional regulator. We report here that expression phcA and production of PhcA-regulated virulence factors are affected by products of the putative operon phcBSR(Q). phcB is required for production of an extracellular factor (EF), tentatively identified as the fatty acid derivative 3-hydroxypalmitic acid methyl ester (3-OH PAME), but a biochemical function for PhcB could not be deduced from DNA sequence analysis. The other genes in the putative operon are predicted to encode proteins homologous to members of two-component signal transduction systems: PhcS has amino acid similarity to histidine kinase sensors, whereas PhcR and OrfQ are similar to response regulators. PhcR is quite unusual because its putative output domain strongly resembles the histidine kinase domain of a sensor protein. Production of the PhcA-regulated factors exopolysaccharide I, endoglucanase, and pectin methyl esterase was reduced 10- to 100-fold only in mutants with a nonpolar insertion in phcB [which express phcSR(Q) in the absence of the EF]; simultaneously, expression of phcA was reduced fivefold. Both a wild-type phenotype and phcA expression were restored by addition of 3-OH PAME to growing cultures. Mutants with polar insertions in phcB or lacking the entire phcBSR(Q) region produced wild-type levels of PhcA-regulated virulence factors. The genetic data suggest that PhcS and PhcR function together to regulate expression of phcA, but the biochemical mechanism for this is unclear. At low levels of the EF, it is likely that PhcS phosphorylates PhcR, and then PhcR interacts either with PhcA (which is required for full expression of phcA) or an unknown component of the signal cascade to inhibit expression of phcA. When the EF reaches a threshold concentration, we suggest that it reduces the ability of PhcS to phosphorylate PhcR</description><subject>ACIDE GRAS</subject><subject>ACIDOS GRASOS</subject><subject>ADN</subject><subject>Amino Acid Sequence</subject><subject>AMINO ACID SEQUENCES</subject><subject>BACTERIA</subject><subject>Bacterial Proteins</subject><subject>Bacteriology</subject><subject>BINDING PROTEINS</subject><subject>CELLULASE</subject><subject>CELULASA</subject><subject>CHEMICAL COMPOSITION</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>ESTER</subject><subject>ESTERES</subject><subject>ESTERS</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>EXTRACELLULAR FACTOR</subject><subject>FACTEUR DE TRANSCRIPTION</subject><subject>FACTORES DE TRANSCRIPCION</subject><subject>FATTY ACIDS</subject><subject>GENBANK/U6193[SIC]</subject><subject>GENE</subject><subject>GENE EXPRESSION</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>GENES</subject><subject>Genes, Bacterial</subject><subject>GENETIC REGULATION</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>GENETIQUE</subject><subject>Gram-Negative Aerobic Bacteria - genetics</subject><subject>Gram-Negative Aerobic Bacteria - pathogenicity</subject><subject>HISTIDINE KINASE</subject><subject>MOLECULAR SEQUENCE DATA</subject><subject>MUTACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>Palmitates - pharmacology</subject><subject>PECTINESTERASAS</subject><subject>PECTINESTERASE</subject><subject>PHCB GENE</subject><subject>PHCR GENE</subject><subject>PHCS GENE</subject><subject>POLISACARIDOS</subject><subject>POLYHOLOSIDE</subject><subject>POLYSACCHARIDES</subject><subject>PROTEIN KINASE</subject><subject>PROTEIN SYNTHESIS</subject><subject>PROTEINA QUINASA</subject><subject>PROTEINAS</subject><subject>PROTEINAS AGLUTINANTES</subject><subject>PROTEINE</subject><subject>PROTEINE DE LIAISON</subject><subject>PROTEINE KINASE</subject><subject>PROTEINS</subject><subject>PSEUDOMONACEAE</subject><subject>Ralstonia solanacearum</subject><subject>RALSTONIAN SOLANACEARUM</subject><subject>REGULATORY GENES</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Analysis</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>SINTESIS DE PROTEINAS</subject><subject>STRUCTURAL GENES</subject><subject>SYNTHESE PROTEIQUE</subject><subject>TRANSCRIPTION FACTORS</subject><subject>Transcription Factors - genetics</subject><subject>Virulence - genetics</subject><subject>Viruses</subject><issn>0021-9193</issn><issn>1098-5530</issn><issn>1067-8832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUstuFDEQHCFQWAKfgGRxQOEwi9uelw8cVhEvKRIRkLPl8WPHq_F4sT0J-0t8JR6ySiAXTm6pq6qr21UUCPAagHRvd_0aWpbrNW0oK2lTdWtgrH1UrACzrqxrih8XK4wJlAwYfVo8i3GHMVRVTU6KEwYtVACr4tcGpRtfSu_2ftJTQvEQk3bITuirGGPykxXo7DLqWXnnJxHfoOhHMQmpRZgdcl7No0g6on3IpUzWT8gbdDnITRn09k9ToWsb5lFPUiMjZPIhLgOCjnlo1Ch5RMvhoIL_ediL0dlkJRLSKuR0Gg4j0tlTeF48MdmSfnF8T4urD--_n38qL758_Hy-uShlU5FUKiWUMaQ1QHFfY6EN1LVoSS9V0whK6oYagE7VqmG6xaSnmBioKBhFFQhFT4t3t7r7uXdayXyVIEa-D9aJcOBeWP5vZ7ID3_prnn8Eapb5r4_84H_M2Tp3Nko95qtpP0feMlxlF-S_wCyWN8JtBr56ANz5OUz5CJyQFmcYNBnU3YJk8DEGbe4cA-ZLaPiuXyzmmi-h4Uto-BKaTH3598Z3xGNK7ucPdjvc2KC5iO6B3L2IEZ6LbbCRX31b5HHVMUrpb4gA164</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>Clough, S.J. (University of Illinois, Urbana, IL.)</creator><creator>Lee, K.E</creator><creator>Schell, M.A</creator><creator>Denny, T.P</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970601</creationdate><title>A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester</title><author>Clough, S.J. (University of Illinois, Urbana, IL.) ; Lee, K.E ; Schell, M.A ; Denny, T.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-ddadff27f130b50aef155a72bcd66a32563f118d5d69e702b302f1431fd3d1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACIDE GRAS</topic><topic>ACIDOS GRASOS</topic><topic>ADN</topic><topic>Amino Acid Sequence</topic><topic>AMINO ACID SEQUENCES</topic><topic>BACTERIA</topic><topic>Bacterial Proteins</topic><topic>Bacteriology</topic><topic>BINDING PROTEINS</topic><topic>CELLULASE</topic><topic>CELULASA</topic><topic>CHEMICAL COMPOSITION</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>ESTER</topic><topic>ESTERES</topic><topic>ESTERS</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>EXTRACELLULAR FACTOR</topic><topic>FACTEUR DE TRANSCRIPTION</topic><topic>FACTORES DE TRANSCRIPCION</topic><topic>FATTY ACIDS</topic><topic>GENBANK/U6193[SIC]</topic><topic>GENE</topic><topic>GENE EXPRESSION</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>GENES</topic><topic>Genes, Bacterial</topic><topic>GENETIC REGULATION</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>GENETIQUE</topic><topic>Gram-Negative Aerobic Bacteria - genetics</topic><topic>Gram-Negative Aerobic Bacteria - pathogenicity</topic><topic>HISTIDINE KINASE</topic><topic>MOLECULAR SEQUENCE DATA</topic><topic>MUTACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>Palmitates - pharmacology</topic><topic>PECTINESTERASAS</topic><topic>PECTINESTERASE</topic><topic>PHCB GENE</topic><topic>PHCR GENE</topic><topic>PHCS GENE</topic><topic>POLISACARIDOS</topic><topic>POLYHOLOSIDE</topic><topic>POLYSACCHARIDES</topic><topic>PROTEIN KINASE</topic><topic>PROTEIN SYNTHESIS</topic><topic>PROTEINA QUINASA</topic><topic>PROTEINAS</topic><topic>PROTEINAS AGLUTINANTES</topic><topic>PROTEINE</topic><topic>PROTEINE DE LIAISON</topic><topic>PROTEINE KINASE</topic><topic>PROTEINS</topic><topic>PSEUDOMONACEAE</topic><topic>Ralstonia solanacearum</topic><topic>RALSTONIAN SOLANACEARUM</topic><topic>REGULATORY GENES</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Analysis</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>SINTESIS DE PROTEINAS</topic><topic>STRUCTURAL GENES</topic><topic>SYNTHESE PROTEIQUE</topic><topic>TRANSCRIPTION FACTORS</topic><topic>Transcription Factors - genetics</topic><topic>Virulence - genetics</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clough, S.J. (University of Illinois, Urbana, IL.)</creatorcontrib><creatorcontrib>Lee, K.E</creatorcontrib><creatorcontrib>Schell, M.A</creatorcontrib><creatorcontrib>Denny, T.P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clough, S.J. (University of Illinois, Urbana, IL.)</au><au>Lee, K.E</au><au>Schell, M.A</au><au>Denny, T.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester</atitle><jtitle>Journal of Bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>1997-06-01</date><risdate>1997</risdate><volume>179</volume><issue>11</issue><spage>3639</spage><epage>3648</epage><pages>3639-3648</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><eissn>1067-8832</eissn><coden>JOBAAY</coden><abstract>Expression of virulence factors in Ralstonia solanacearum is controlled by a complex regulatory network, at the center of which is PhcA, a LysR family transcriptional regulator. We report here that expression phcA and production of PhcA-regulated virulence factors are affected by products of the putative operon phcBSR(Q). phcB is required for production of an extracellular factor (EF), tentatively identified as the fatty acid derivative 3-hydroxypalmitic acid methyl ester (3-OH PAME), but a biochemical function for PhcB could not be deduced from DNA sequence analysis. The other genes in the putative operon are predicted to encode proteins homologous to members of two-component signal transduction systems: PhcS has amino acid similarity to histidine kinase sensors, whereas PhcR and OrfQ are similar to response regulators. PhcR is quite unusual because its putative output domain strongly resembles the histidine kinase domain of a sensor protein. Production of the PhcA-regulated factors exopolysaccharide I, endoglucanase, and pectin methyl esterase was reduced 10- to 100-fold only in mutants with a nonpolar insertion in phcB [which express phcSR(Q) in the absence of the EF]; simultaneously, expression of phcA was reduced fivefold. Both a wild-type phenotype and phcA expression were restored by addition of 3-OH PAME to growing cultures. Mutants with polar insertions in phcB or lacking the entire phcBSR(Q) region produced wild-type levels of PhcA-regulated virulence factors. The genetic data suggest that PhcS and PhcR function together to regulate expression of phcA, but the biochemical mechanism for this is unclear. At low levels of the EF, it is likely that PhcS phosphorylates PhcR, and then PhcR interacts either with PhcA (which is required for full expression of phcA) or an unknown component of the signal cascade to inhibit expression of phcA. When the EF reaches a threshold concentration, we suggest that it reduces the ability of PhcS to phosphorylate PhcR</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>9171411</pmid><doi>10.1128/jb.179.11.3639-3648.1997</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9193 |
ispartof | Journal of Bacteriology, 1997-06, Vol.179 (11), p.3639-3648 |
issn | 0021-9193 1098-5530 1067-8832 |
language | eng |
recordid | cdi_fao_agris_US1997048933 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | ACIDE GRAS ACIDOS GRASOS ADN Amino Acid Sequence AMINO ACID SEQUENCES BACTERIA Bacterial Proteins Bacteriology BINDING PROTEINS CELLULASE CELULASA CHEMICAL COMPOSITION COMPOSICION QUIMICA COMPOSITION CHIMIQUE DNA DNA-Binding Proteins - genetics ESTER ESTERES ESTERS EXPRESION GENICA EXPRESSION DES GENES EXTRACELLULAR FACTOR FACTEUR DE TRANSCRIPTION FACTORES DE TRANSCRIPCION FATTY ACIDS GENBANK/U6193[SIC] GENE GENE EXPRESSION Gene Expression Regulation, Bacterial - drug effects GENES Genes, Bacterial GENETIC REGULATION GENETICA GENETICS GENETIQUE Gram-Negative Aerobic Bacteria - genetics Gram-Negative Aerobic Bacteria - pathogenicity HISTIDINE KINASE MOLECULAR SEQUENCE DATA MUTACION MUTANT MUTANTES MUTANTS MUTATION NUCLEOTIDE SEQUENCE Palmitates - pharmacology PECTINESTERASAS PECTINESTERASE PHCB GENE PHCR GENE PHCS GENE POLISACARIDOS POLYHOLOSIDE POLYSACCHARIDES PROTEIN KINASE PROTEIN SYNTHESIS PROTEINA QUINASA PROTEINAS PROTEINAS AGLUTINANTES PROTEINE PROTEINE DE LIAISON PROTEINE KINASE PROTEINS PSEUDOMONACEAE Ralstonia solanacearum RALSTONIAN SOLANACEARUM REGULATORY GENES SECUENCIA NUCLEOTIDICA Sequence Analysis SEQUENCE NUCLEOTIDIQUE SINTESIS DE PROTEINAS STRUCTURAL GENES SYNTHESE PROTEIQUE TRANSCRIPTION FACTORS Transcription Factors - genetics Virulence - genetics Viruses |
title | A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-component%20system%20in%20Ralstonia%20(Pseudomonas)%20solanacearum%20modulates%20production%20of%20PhcA-regulated%20virulence%20factors%20in%20response%20to%203-hydroxypalmitic%20acid%20methyl%20ester&rft.jtitle=Journal%20of%20Bacteriology&rft.au=Clough,%20S.J.%20(University%20of%20Illinois,%20Urbana,%20IL.)&rft.date=1997-06-01&rft.volume=179&rft.issue=11&rft.spage=3639&rft.epage=3648&rft.pages=3639-3648&rft.issn=0021-9193&rft.eissn=1098-5530&rft.coden=JOBAAY&rft_id=info:doi/10.1128/jb.179.11.3639-3648.1997&rft_dat=%3Cproquest_fao_a%3E15964207%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227059616&rft_id=info:pmid/9171411&rfr_iscdi=true |