Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture
The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerge...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1993-06, Vol.59 (6), p.1887-1892 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1892 |
---|---|
container_issue | 6 |
container_start_page | 1887 |
container_title | Applied and Environmental Microbiology |
container_volume | 59 |
creator | BARCLAY, C. D LEGGE, R. L FARQUHAR, G. F |
description | The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant. |
doi_str_mv | 10.1128/AEM.59.6.1887-1892.1993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US19950013333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16598904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-153e844f115838084defd22a59dcf2fe429b02819019ac7d13f6bd6e896fc6043</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EKkvhIwAGVb0l-E_s2AcOVVVapFZUKpW4WV7HTlySeGsnVP32OOxqRbngiw_zezNv5gHwHqMSYyI-nZxdlUyWvMRC1AUWkpRYSvoMrDCSomCU8udghZCUBSEVeglepXSHEKoQFwfgQFAiBGIr8OMqNLbv_djCqbOwjeFh6uBPP9rJmwSDg9edHm0MptN2stB08TGFtAnRzwP0I0zzerCxtQ1Mk84aaOZ-mqN9DV443Sf7ZvcfgtsvZ99PL4rLb-dfT08uC8NpPRWYUSuqymHMBBVIVI11DSGaycY44mxF5BoRgSXCUpu6wdTxdcOtkNwZjip6CD5v-24WI42x4xR1rzbRDzo-qqC9eloZfafa8EthQXDNs_54p4_hfrZpUoNPJp8kbx3mpOrsi1YS_RfEnEkh_zj6-A94F-Y45iMogpgkombL2HoLmRhSitbtHWOkloSVtoNiUnG1JKyWhNWScFa-_XvhvW4Xaa4f7eo6Gd27qEfj0x6rBOWSLW0-bLHOt92Dj1bpNDwdmpl3W8bpoHQbc5vbm2yCIYTp8n4DipvE4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205928756</pqid></control><display><type>article</type><title>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>BARCLAY, C. D ; LEGGE, R. L ; FARQUHAR, G. F</creator><creatorcontrib>BARCLAY, C. D ; LEGGE, R. L ; FARQUHAR, G. F</creatorcontrib><description>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.59.6.1887-1892.1993</identifier><identifier>PMID: 8328805</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>azote ; Bacteria ; Bacteriology ; Basidiomycota - enzymology ; Basidiomycota - growth & development ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; biomasa ; biomass ; biomasse ; biosintesis ; biosynthese ; biosynthesis ; Biotechnology ; cell culture ; contenido de humedad ; contenido de materia seca ; crecimiento ; croissance ; cultivo de celulas ; culture de cellule ; Culture Media - chemistry ; disponibilidad de nutrientes ; disponibilite d' element nutritif ; dry matter content ; Ecology ; Fundamental and applied biological sciences. Psychology ; Fungi ; glicerol ; glycerol ; growth ; growth rate ; indice de crecimiento ; mathematical models ; metabolism ; metabolisme ; metabolismo ; micelio ; Mission oriented research ; modele ; modele mathematique ; modelos ; modelos matematicos ; Models, Biological ; moisture content ; mycelium ; nitrogen ; nitrogeno ; nutrient availability ; peroxidasas ; peroxidases ; Peroxidases - metabolism ; peroxydase ; Phanerochaete chrysosporium ; Physiology and metabolism ; taux de croissance ; teneur en eau ; teneur en matiere seche</subject><ispartof>Applied and Environmental Microbiology, 1993-06, Vol.59 (6), p.1887-1892</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jun 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-153e844f115838084defd22a59dcf2fe429b02819019ac7d13f6bd6e896fc6043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC182176/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC182176/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4836953$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8328805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BARCLAY, C. D</creatorcontrib><creatorcontrib>LEGGE, R. L</creatorcontrib><creatorcontrib>FARQUHAR, G. F</creatorcontrib><title>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</description><subject>azote</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Basidiomycota - enzymology</subject><subject>Basidiomycota - growth & development</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>biomasa</subject><subject>biomass</subject><subject>biomasse</subject><subject>biosintesis</subject><subject>biosynthese</subject><subject>biosynthesis</subject><subject>Biotechnology</subject><subject>cell culture</subject><subject>contenido de humedad</subject><subject>contenido de materia seca</subject><subject>crecimiento</subject><subject>croissance</subject><subject>cultivo de celulas</subject><subject>culture de cellule</subject><subject>Culture Media - chemistry</subject><subject>disponibilidad de nutrientes</subject><subject>disponibilite d' element nutritif</subject><subject>dry matter content</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>glicerol</subject><subject>glycerol</subject><subject>growth</subject><subject>growth rate</subject><subject>indice de crecimiento</subject><subject>mathematical models</subject><subject>metabolism</subject><subject>metabolisme</subject><subject>metabolismo</subject><subject>micelio</subject><subject>Mission oriented research</subject><subject>modele</subject><subject>modele mathematique</subject><subject>modelos</subject><subject>modelos matematicos</subject><subject>Models, Biological</subject><subject>moisture content</subject><subject>mycelium</subject><subject>nitrogen</subject><subject>nitrogeno</subject><subject>nutrient availability</subject><subject>peroxidasas</subject><subject>peroxidases</subject><subject>Peroxidases - metabolism</subject><subject>peroxydase</subject><subject>Phanerochaete chrysosporium</subject><subject>Physiology and metabolism</subject><subject>taux de croissance</subject><subject>teneur en eau</subject><subject>teneur en matiere seche</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EKkvhIwAGVb0l-E_s2AcOVVVapFZUKpW4WV7HTlySeGsnVP32OOxqRbngiw_zezNv5gHwHqMSYyI-nZxdlUyWvMRC1AUWkpRYSvoMrDCSomCU8udghZCUBSEVeglepXSHEKoQFwfgQFAiBGIr8OMqNLbv_djCqbOwjeFh6uBPP9rJmwSDg9edHm0MptN2stB08TGFtAnRzwP0I0zzerCxtQ1Mk84aaOZ-mqN9DV443Sf7ZvcfgtsvZ99PL4rLb-dfT08uC8NpPRWYUSuqymHMBBVIVI11DSGaycY44mxF5BoRgSXCUpu6wdTxdcOtkNwZjip6CD5v-24WI42x4xR1rzbRDzo-qqC9eloZfafa8EthQXDNs_54p4_hfrZpUoNPJp8kbx3mpOrsi1YS_RfEnEkh_zj6-A94F-Y45iMogpgkombL2HoLmRhSitbtHWOkloSVtoNiUnG1JKyWhNWScFa-_XvhvW4Xaa4f7eo6Gd27qEfj0x6rBOWSLW0-bLHOt92Dj1bpNDwdmpl3W8bpoHQbc5vbm2yCIYTp8n4DipvE4w</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>BARCLAY, C. D</creator><creator>LEGGE, R. L</creator><creator>FARQUHAR, G. F</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930601</creationdate><title>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</title><author>BARCLAY, C. D ; LEGGE, R. L ; FARQUHAR, G. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-153e844f115838084defd22a59dcf2fe429b02819019ac7d13f6bd6e896fc6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>azote</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Basidiomycota - enzymology</topic><topic>Basidiomycota - growth & development</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>biomasa</topic><topic>biomass</topic><topic>biomasse</topic><topic>biosintesis</topic><topic>biosynthese</topic><topic>biosynthesis</topic><topic>Biotechnology</topic><topic>cell culture</topic><topic>contenido de humedad</topic><topic>contenido de materia seca</topic><topic>crecimiento</topic><topic>croissance</topic><topic>cultivo de celulas</topic><topic>culture de cellule</topic><topic>Culture Media - chemistry</topic><topic>disponibilidad de nutrientes</topic><topic>disponibilite d' element nutritif</topic><topic>dry matter content</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>glicerol</topic><topic>glycerol</topic><topic>growth</topic><topic>growth rate</topic><topic>indice de crecimiento</topic><topic>mathematical models</topic><topic>metabolism</topic><topic>metabolisme</topic><topic>metabolismo</topic><topic>micelio</topic><topic>Mission oriented research</topic><topic>modele</topic><topic>modele mathematique</topic><topic>modelos</topic><topic>modelos matematicos</topic><topic>Models, Biological</topic><topic>moisture content</topic><topic>mycelium</topic><topic>nitrogen</topic><topic>nitrogeno</topic><topic>nutrient availability</topic><topic>peroxidasas</topic><topic>peroxidases</topic><topic>Peroxidases - metabolism</topic><topic>peroxydase</topic><topic>Phanerochaete chrysosporium</topic><topic>Physiology and metabolism</topic><topic>taux de croissance</topic><topic>teneur en eau</topic><topic>teneur en matiere seche</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARCLAY, C. D</creatorcontrib><creatorcontrib>LEGGE, R. L</creatorcontrib><creatorcontrib>FARQUHAR, G. F</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARCLAY, C. D</au><au>LEGGE, R. L</au><au>FARQUHAR, G. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1993-06-01</date><risdate>1993</risdate><volume>59</volume><issue>6</issue><spage>1887</spage><epage>1892</epage><pages>1887-1892</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8328805</pmid><doi>10.1128/AEM.59.6.1887-1892.1993</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1993-06, Vol.59 (6), p.1887-1892 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_fao_agris_US19950013333 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | azote Bacteria Bacteriology Basidiomycota - enzymology Basidiomycota - growth & development Biological and medical sciences Biology of microorganisms of confirmed or potential industrial interest biomasa biomass biomasse biosintesis biosynthese biosynthesis Biotechnology cell culture contenido de humedad contenido de materia seca crecimiento croissance cultivo de celulas culture de cellule Culture Media - chemistry disponibilidad de nutrientes disponibilite d' element nutritif dry matter content Ecology Fundamental and applied biological sciences. Psychology Fungi glicerol glycerol growth growth rate indice de crecimiento mathematical models metabolism metabolisme metabolismo micelio Mission oriented research modele modele mathematique modelos modelos matematicos Models, Biological moisture content mycelium nitrogen nitrogeno nutrient availability peroxidasas peroxidases Peroxidases - metabolism peroxydase Phanerochaete chrysosporium Physiology and metabolism taux de croissance teneur en eau teneur en matiere seche |
title | Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20growth%20kinetics%20of%20Phanerochaete%20chrysosporium%20in%20submerged%20static%20culture&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=BARCLAY,%20C.%20D&rft.date=1993-06-01&rft.volume=59&rft.issue=6&rft.spage=1887&rft.epage=1892&rft.pages=1887-1892&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.59.6.1887-1892.1993&rft_dat=%3Cproquest_fao_a%3E16598904%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205928756&rft_id=info:pmid/8328805&rfr_iscdi=true |