Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture

The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1993-06, Vol.59 (6), p.1887-1892
Hauptverfasser: BARCLAY, C. D, LEGGE, R. L, FARQUHAR, G. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1892
container_issue 6
container_start_page 1887
container_title Applied and Environmental Microbiology
container_volume 59
creator BARCLAY, C. D
LEGGE, R. L
FARQUHAR, G. F
description The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.
doi_str_mv 10.1128/AEM.59.6.1887-1892.1993
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_fao_agris_US19950013333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16598904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-153e844f115838084defd22a59dcf2fe429b02819019ac7d13f6bd6e896fc6043</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EKkvhIwAGVb0l-E_s2AcOVVVapFZUKpW4WV7HTlySeGsnVP32OOxqRbngiw_zezNv5gHwHqMSYyI-nZxdlUyWvMRC1AUWkpRYSvoMrDCSomCU8udghZCUBSEVeglepXSHEKoQFwfgQFAiBGIr8OMqNLbv_djCqbOwjeFh6uBPP9rJmwSDg9edHm0MptN2stB08TGFtAnRzwP0I0zzerCxtQ1Mk84aaOZ-mqN9DV443Sf7ZvcfgtsvZ99PL4rLb-dfT08uC8NpPRWYUSuqymHMBBVIVI11DSGaycY44mxF5BoRgSXCUpu6wdTxdcOtkNwZjip6CD5v-24WI42x4xR1rzbRDzo-qqC9eloZfafa8EthQXDNs_54p4_hfrZpUoNPJp8kbx3mpOrsi1YS_RfEnEkh_zj6-A94F-Y45iMogpgkombL2HoLmRhSitbtHWOkloSVtoNiUnG1JKyWhNWScFa-_XvhvW4Xaa4f7eo6Gd27qEfj0x6rBOWSLW0-bLHOt92Dj1bpNDwdmpl3W8bpoHQbc5vbm2yCIYTp8n4DipvE4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205928756</pqid></control><display><type>article</type><title>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>BARCLAY, C. D ; LEGGE, R. L ; FARQUHAR, G. F</creator><creatorcontrib>BARCLAY, C. D ; LEGGE, R. L ; FARQUHAR, G. F</creatorcontrib><description>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.59.6.1887-1892.1993</identifier><identifier>PMID: 8328805</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>azote ; Bacteria ; Bacteriology ; Basidiomycota - enzymology ; Basidiomycota - growth &amp; development ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; biomasa ; biomass ; biomasse ; biosintesis ; biosynthese ; biosynthesis ; Biotechnology ; cell culture ; contenido de humedad ; contenido de materia seca ; crecimiento ; croissance ; cultivo de celulas ; culture de cellule ; Culture Media - chemistry ; disponibilidad de nutrientes ; disponibilite d' element nutritif ; dry matter content ; Ecology ; Fundamental and applied biological sciences. Psychology ; Fungi ; glicerol ; glycerol ; growth ; growth rate ; indice de crecimiento ; mathematical models ; metabolism ; metabolisme ; metabolismo ; micelio ; Mission oriented research ; modele ; modele mathematique ; modelos ; modelos matematicos ; Models, Biological ; moisture content ; mycelium ; nitrogen ; nitrogeno ; nutrient availability ; peroxidasas ; peroxidases ; Peroxidases - metabolism ; peroxydase ; Phanerochaete chrysosporium ; Physiology and metabolism ; taux de croissance ; teneur en eau ; teneur en matiere seche</subject><ispartof>Applied and Environmental Microbiology, 1993-06, Vol.59 (6), p.1887-1892</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jun 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-153e844f115838084defd22a59dcf2fe429b02819019ac7d13f6bd6e896fc6043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC182176/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC182176/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,3176,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4836953$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8328805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BARCLAY, C. D</creatorcontrib><creatorcontrib>LEGGE, R. L</creatorcontrib><creatorcontrib>FARQUHAR, G. F</creatorcontrib><title>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</description><subject>azote</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Basidiomycota - enzymology</subject><subject>Basidiomycota - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>biomasa</subject><subject>biomass</subject><subject>biomasse</subject><subject>biosintesis</subject><subject>biosynthese</subject><subject>biosynthesis</subject><subject>Biotechnology</subject><subject>cell culture</subject><subject>contenido de humedad</subject><subject>contenido de materia seca</subject><subject>crecimiento</subject><subject>croissance</subject><subject>cultivo de celulas</subject><subject>culture de cellule</subject><subject>Culture Media - chemistry</subject><subject>disponibilidad de nutrientes</subject><subject>disponibilite d' element nutritif</subject><subject>dry matter content</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>glicerol</subject><subject>glycerol</subject><subject>growth</subject><subject>growth rate</subject><subject>indice de crecimiento</subject><subject>mathematical models</subject><subject>metabolism</subject><subject>metabolisme</subject><subject>metabolismo</subject><subject>micelio</subject><subject>Mission oriented research</subject><subject>modele</subject><subject>modele mathematique</subject><subject>modelos</subject><subject>modelos matematicos</subject><subject>Models, Biological</subject><subject>moisture content</subject><subject>mycelium</subject><subject>nitrogen</subject><subject>nitrogeno</subject><subject>nutrient availability</subject><subject>peroxidasas</subject><subject>peroxidases</subject><subject>Peroxidases - metabolism</subject><subject>peroxydase</subject><subject>Phanerochaete chrysosporium</subject><subject>Physiology and metabolism</subject><subject>taux de croissance</subject><subject>teneur en eau</subject><subject>teneur en matiere seche</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EKkvhIwAGVb0l-E_s2AcOVVVapFZUKpW4WV7HTlySeGsnVP32OOxqRbngiw_zezNv5gHwHqMSYyI-nZxdlUyWvMRC1AUWkpRYSvoMrDCSomCU8udghZCUBSEVeglepXSHEKoQFwfgQFAiBGIr8OMqNLbv_djCqbOwjeFh6uBPP9rJmwSDg9edHm0MptN2stB08TGFtAnRzwP0I0zzerCxtQ1Mk84aaOZ-mqN9DV443Sf7ZvcfgtsvZ99PL4rLb-dfT08uC8NpPRWYUSuqymHMBBVIVI11DSGaycY44mxF5BoRgSXCUpu6wdTxdcOtkNwZjip6CD5v-24WI42x4xR1rzbRDzo-qqC9eloZfafa8EthQXDNs_54p4_hfrZpUoNPJp8kbx3mpOrsi1YS_RfEnEkh_zj6-A94F-Y45iMogpgkombL2HoLmRhSitbtHWOkloSVtoNiUnG1JKyWhNWScFa-_XvhvW4Xaa4f7eo6Gd27qEfj0x6rBOWSLW0-bLHOt92Dj1bpNDwdmpl3W8bpoHQbc5vbm2yCIYTp8n4DipvE4w</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>BARCLAY, C. D</creator><creator>LEGGE, R. L</creator><creator>FARQUHAR, G. F</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930601</creationdate><title>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</title><author>BARCLAY, C. D ; LEGGE, R. L ; FARQUHAR, G. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-153e844f115838084defd22a59dcf2fe429b02819019ac7d13f6bd6e896fc6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>azote</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Basidiomycota - enzymology</topic><topic>Basidiomycota - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>biomasa</topic><topic>biomass</topic><topic>biomasse</topic><topic>biosintesis</topic><topic>biosynthese</topic><topic>biosynthesis</topic><topic>Biotechnology</topic><topic>cell culture</topic><topic>contenido de humedad</topic><topic>contenido de materia seca</topic><topic>crecimiento</topic><topic>croissance</topic><topic>cultivo de celulas</topic><topic>culture de cellule</topic><topic>Culture Media - chemistry</topic><topic>disponibilidad de nutrientes</topic><topic>disponibilite d' element nutritif</topic><topic>dry matter content</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>glicerol</topic><topic>glycerol</topic><topic>growth</topic><topic>growth rate</topic><topic>indice de crecimiento</topic><topic>mathematical models</topic><topic>metabolism</topic><topic>metabolisme</topic><topic>metabolismo</topic><topic>micelio</topic><topic>Mission oriented research</topic><topic>modele</topic><topic>modele mathematique</topic><topic>modelos</topic><topic>modelos matematicos</topic><topic>Models, Biological</topic><topic>moisture content</topic><topic>mycelium</topic><topic>nitrogen</topic><topic>nitrogeno</topic><topic>nutrient availability</topic><topic>peroxidasas</topic><topic>peroxidases</topic><topic>Peroxidases - metabolism</topic><topic>peroxydase</topic><topic>Phanerochaete chrysosporium</topic><topic>Physiology and metabolism</topic><topic>taux de croissance</topic><topic>teneur en eau</topic><topic>teneur en matiere seche</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARCLAY, C. D</creatorcontrib><creatorcontrib>LEGGE, R. L</creatorcontrib><creatorcontrib>FARQUHAR, G. F</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARCLAY, C. D</au><au>LEGGE, R. L</au><au>FARQUHAR, G. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1993-06-01</date><risdate>1993</risdate><volume>59</volume><issue>6</issue><spage>1887</spage><epage>1892</epage><pages>1887-1892</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8328805</pmid><doi>10.1128/AEM.59.6.1887-1892.1993</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1993-06, Vol.59 (6), p.1887-1892
issn 0099-2240
1098-5336
language eng
recordid cdi_fao_agris_US19950013333
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects azote
Bacteria
Bacteriology
Basidiomycota - enzymology
Basidiomycota - growth & development
Biological and medical sciences
Biology of microorganisms of confirmed or potential industrial interest
biomasa
biomass
biomasse
biosintesis
biosynthese
biosynthesis
Biotechnology
cell culture
contenido de humedad
contenido de materia seca
crecimiento
croissance
cultivo de celulas
culture de cellule
Culture Media - chemistry
disponibilidad de nutrientes
disponibilite d' element nutritif
dry matter content
Ecology
Fundamental and applied biological sciences. Psychology
Fungi
glicerol
glycerol
growth
growth rate
indice de crecimiento
mathematical models
metabolism
metabolisme
metabolismo
micelio
Mission oriented research
modele
modele mathematique
modelos
modelos matematicos
Models, Biological
moisture content
mycelium
nitrogen
nitrogeno
nutrient availability
peroxidasas
peroxidases
Peroxidases - metabolism
peroxydase
Phanerochaete chrysosporium
Physiology and metabolism
taux de croissance
teneur en eau
teneur en matiere seche
title Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20growth%20kinetics%20of%20Phanerochaete%20chrysosporium%20in%20submerged%20static%20culture&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=BARCLAY,%20C.%20D&rft.date=1993-06-01&rft.volume=59&rft.issue=6&rft.spage=1887&rft.epage=1892&rft.pages=1887-1892&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.59.6.1887-1892.1993&rft_dat=%3Cproquest_fao_a%3E16598904%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205928756&rft_id=info:pmid/8328805&rfr_iscdi=true