Dynamic behavior of smart thin-walled composite structures
This doctoral dissertation deals with optimization and active vibration suppression of smart thin-walled composite structures by using piezoelectric actuators and sensors. Mathematical model of plate composite structure with integrated actuators and sensors is developed. The problem is formulated us...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | srp |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Zorić Nemanja |
description | This doctoral dissertation deals with optimization and active vibration suppression of smart thin-walled composite structures by using piezoelectric actuators and sensors. Mathematical model of plate composite structure with integrated actuators and sensors is developed. The problem is formulated using the finite element method based on the third order shear deformation theory. Constitutive equations and the strain - displacement relations are linear. In further work, the problem of determination of optimal sizes, positions and orientations of actuator – sensor pairs are presented and, after that, objective functions and constraints are defined. Also, the integration of finite element method and particle swarm optimization is performed and using defined optimization criteria, the optimization of sizes, positions and orientations of five actuator – sensor pairs on square cantilever composite is performed. The cantilever composite plates have following orientation of layers: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Actuators and sensors considered in dissertation are collocated. In order to overcome problems during conventional control algorithm synthesis which occur due to vibration’s stochastic nature, the optimized self-tuning fuzzy logic controller is presented. The main idea of proposed controller is amplitude monitoring and self-tuning of input scaling factors based on amplitude. Membership functions are parameterized and optimal combination of parameters are found by using the particle swarm optimization method based on previously defined optimization criteria. Two inference methods are considered: the Mamdani and zero-order Takagi-Sugeno-Kang inference methods. Numerical studies are provided for composite cantilever beam and composite cantilever plate for both free and forced vibrations. Single-input single-output (SISO) configuration is considered for the cantilever beam and multiple-input multiple-output (MIMO) configuration is considered for cantilever plate. Comparisons of control performances for these two types of inference methods as well as optimized self-tuning fuzzy logic controller with linear quadratic regulator are performed.
Ova doktorska disertacija bavi se optimizacijom i aktivnim prigušenjem vibracija pametnih tankozidnih kompozitnih struktura pomoću piezoelektričnih aktuatora i senzora. Razvijen je matematički model pločaste kompozitne strukture sa integrisanim aktuatorima i senzorima. |
format | Dissertation |
fullrecord | <record><control><sourceid>europeana_1GC</sourceid><recordid>TN_cdi_europeana_collections_9200447_BibliographicResource_3000095543158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9200447_BibliographicResource_3000095543158</sourcerecordid><originalsourceid>FETCH-europeana_collections_9200447_BibliographicResource_30000955431583</originalsourceid><addsrcrecordid>eNqtjDsOwjAMQLswIOAOuUClQltBGfmpM2KPTHCppTSu7ATE7enAEXjLm96bZ_vTJ8BAztyxhxexGO6MDiDRxJ5C_gbv8WEcDyMrRTQaJbmYBHWZzTrwiqufF1l7Od-ObY5JeEQIYB1PtYvEQW2zKYqq2toD3T3xU2DsyV1ROYlDWxYTTV1X5brelX9cfQGAckvG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>dissertation</recordtype></control><display><type>dissertation</type><title>Dynamic behavior of smart thin-walled composite structures</title><source>Europeana Collections</source><creator>Zorić Nemanja</creator><creatorcontrib>Zorić Nemanja ; Mladenović Nikola ; Mitrović Zoran ; Simonović Aleksandar ; Rusov Srđan ; Lazarević Mihailo</creatorcontrib><description>This doctoral dissertation deals with optimization and active vibration suppression of smart thin-walled composite structures by using piezoelectric actuators and sensors. Mathematical model of plate composite structure with integrated actuators and sensors is developed. The problem is formulated using the finite element method based on the third order shear deformation theory. Constitutive equations and the strain - displacement relations are linear. In further work, the problem of determination of optimal sizes, positions and orientations of actuator – sensor pairs are presented and, after that, objective functions and constraints are defined. Also, the integration of finite element method and particle swarm optimization is performed and using defined optimization criteria, the optimization of sizes, positions and orientations of five actuator – sensor pairs on square cantilever composite is performed. The cantilever composite plates have following orientation of layers: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Actuators and sensors considered in dissertation are collocated. In order to overcome problems during conventional control algorithm synthesis which occur due to vibration’s stochastic nature, the optimized self-tuning fuzzy logic controller is presented. The main idea of proposed controller is amplitude monitoring and self-tuning of input scaling factors based on amplitude. Membership functions are parameterized and optimal combination of parameters are found by using the particle swarm optimization method based on previously defined optimization criteria. Two inference methods are considered: the Mamdani and zero-order Takagi-Sugeno-Kang inference methods. Numerical studies are provided for composite cantilever beam and composite cantilever plate for both free and forced vibrations. Single-input single-output (SISO) configuration is considered for the cantilever beam and multiple-input multiple-output (MIMO) configuration is considered for cantilever plate. Comparisons of control performances for these two types of inference methods as well as optimized self-tuning fuzzy logic controller with linear quadratic regulator are performed.
Ova doktorska disertacija bavi se optimizacijom i aktivnim prigušenjem vibracija pametnih tankozidnih kompozitnih struktura pomoću piezoelektričnih aktuatora i senzora. Razvijen je matematički model pločaste kompozitne strukture sa integrisanim aktuatorima i senzorima. Problem je definisan metodom konačnih elemenata bazirane na teoriji smicanja trećeg reda. Konstitutivne jednačine i veza između pomeranja i deformacija su linearne. U daljem radu, predstavljen je problem određivanja optimalnih veličina, položaja i orijentacija aktuator – senzor parova, a zatim su definisane funkcija cilja i ograničenja. Takođe, izvršena je sinteza metode konačnih elemenata i optimizacije rojem čestica i primenom definisanih kriterijuma optimizacije, izvršena je optimizacija veličine, položaja i orijentacije pet aktuator-senzor parova na kvadratnim uklještenim kompozitnim pločama sa sledećim konfiguracijama slojeva: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Aktuatori i senzori, koji se razmatraju u ovoj disertaciji, jednakih su dimenzija, isto su orijentisani i nalaze se na suprotnim stranama ploče: aktuator na gornjoj strani, a senzor na donjoj strani ploče. Radi prevazilaženja problema prilikom sinteze konvencionalnih upravljačkih algoritama koji se javljaju usled stohastične prirode vibracija, predstavljen je optimizovani samopodešavajući fazi-logički upravljački sistem. Glavna ideja ovog upravljačkog sistema je praćenje amplitude i samopodešavanje ulaznih skalirajućih faktora na osnovu amplitude. Funkcije pripadnosti su parametrizovane, a optimalna kombinacija parametara nađena je pomoću optimizacije rojem čestica na osnovu definisanih kriterijuma optimizacije. Razmatrana su dva principa zaključivanja: Mamdani princip zaključivanja i Takagi-Sugeno-Kang princip zaključivanja nultog reda. Numerički primeri su dati za kompozitnu konzolu i kompozitnu uklještenu ploču za slobodne i prinudne vibracije. Za konzolu razmatrana je jedno-ulazno- jedno-izlazna („Single input – single output“, „SISO“) konfiguracija, a za ploču više-ulazno-više-izlazna („Multiple inputs – multiple outputs“, „MIMO“) konfiguracija. Izvršeno je poređenje performansi prilikom upotrebe različitih principa fazi zaključivanja, kao i poređenje optimizovanog samopodešavajućeg fazi-logičkog upravljačkog sistema sa linearno-kvadratnim regulatorom.</description><language>srp</language><publisher>University of Belgrade, Faculty of Mechanical Engineering</publisher><subject>active vibration reduction ; aktivno prigušenje vibracija ; fazi-logičko upravljanje ; finite element method ; fuzzy logic control ; Mamdani inference methods ; mamdani princip zaključivanja ; metoda konačnih elemenata ; modal analysis ; modalna analiza ; optimizacija rojem čestica ; pametne tankozidne kompozitne strukture ; particle swarm optimization ; piezoelectric actuators ; piezoelektrični aktuatori ; smart thin-walled composite structures ; Takagi-Sugeno-Kang princip zaključivanja nultog reda ; zero-order Takagi-Sugeno-Kang inference method</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://data.europeana.eu/item/9200447/BibliographicResource_3000095543158$$EHTML$$P50$$Geuropeana$$Hfree_for_read</linktohtml><link.rule.ids>311,776,38494,75918</link.rule.ids><linktorsrc>$$Uhttps://data.europeana.eu/item/9200447/BibliographicResource_3000095543158$$EView_record_in_Europeana$$FView_record_in_$$GEuropeana$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zorić Nemanja</creatorcontrib><title>Dynamic behavior of smart thin-walled composite structures</title><description>This doctoral dissertation deals with optimization and active vibration suppression of smart thin-walled composite structures by using piezoelectric actuators and sensors. Mathematical model of plate composite structure with integrated actuators and sensors is developed. The problem is formulated using the finite element method based on the third order shear deformation theory. Constitutive equations and the strain - displacement relations are linear. In further work, the problem of determination of optimal sizes, positions and orientations of actuator – sensor pairs are presented and, after that, objective functions and constraints are defined. Also, the integration of finite element method and particle swarm optimization is performed and using defined optimization criteria, the optimization of sizes, positions and orientations of five actuator – sensor pairs on square cantilever composite is performed. The cantilever composite plates have following orientation of layers: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Actuators and sensors considered in dissertation are collocated. In order to overcome problems during conventional control algorithm synthesis which occur due to vibration’s stochastic nature, the optimized self-tuning fuzzy logic controller is presented. The main idea of proposed controller is amplitude monitoring and self-tuning of input scaling factors based on amplitude. Membership functions are parameterized and optimal combination of parameters are found by using the particle swarm optimization method based on previously defined optimization criteria. Two inference methods are considered: the Mamdani and zero-order Takagi-Sugeno-Kang inference methods. Numerical studies are provided for composite cantilever beam and composite cantilever plate for both free and forced vibrations. Single-input single-output (SISO) configuration is considered for the cantilever beam and multiple-input multiple-output (MIMO) configuration is considered for cantilever plate. Comparisons of control performances for these two types of inference methods as well as optimized self-tuning fuzzy logic controller with linear quadratic regulator are performed.
Ova doktorska disertacija bavi se optimizacijom i aktivnim prigušenjem vibracija pametnih tankozidnih kompozitnih struktura pomoću piezoelektričnih aktuatora i senzora. Razvijen je matematički model pločaste kompozitne strukture sa integrisanim aktuatorima i senzorima. Problem je definisan metodom konačnih elemenata bazirane na teoriji smicanja trećeg reda. Konstitutivne jednačine i veza između pomeranja i deformacija su linearne. U daljem radu, predstavljen je problem određivanja optimalnih veličina, položaja i orijentacija aktuator – senzor parova, a zatim su definisane funkcija cilja i ograničenja. Takođe, izvršena je sinteza metode konačnih elemenata i optimizacije rojem čestica i primenom definisanih kriterijuma optimizacije, izvršena je optimizacija veličine, položaja i orijentacije pet aktuator-senzor parova na kvadratnim uklještenim kompozitnim pločama sa sledećim konfiguracijama slojeva: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Aktuatori i senzori, koji se razmatraju u ovoj disertaciji, jednakih su dimenzija, isto su orijentisani i nalaze se na suprotnim stranama ploče: aktuator na gornjoj strani, a senzor na donjoj strani ploče. Radi prevazilaženja problema prilikom sinteze konvencionalnih upravljačkih algoritama koji se javljaju usled stohastične prirode vibracija, predstavljen je optimizovani samopodešavajući fazi-logički upravljački sistem. Glavna ideja ovog upravljačkog sistema je praćenje amplitude i samopodešavanje ulaznih skalirajućih faktora na osnovu amplitude. Funkcije pripadnosti su parametrizovane, a optimalna kombinacija parametara nađena je pomoću optimizacije rojem čestica na osnovu definisanih kriterijuma optimizacije. Razmatrana su dva principa zaključivanja: Mamdani princip zaključivanja i Takagi-Sugeno-Kang princip zaključivanja nultog reda. Numerički primeri su dati za kompozitnu konzolu i kompozitnu uklještenu ploču za slobodne i prinudne vibracije. Za konzolu razmatrana je jedno-ulazno- jedno-izlazna („Single input – single output“, „SISO“) konfiguracija, a za ploču više-ulazno-više-izlazna („Multiple inputs – multiple outputs“, „MIMO“) konfiguracija. Izvršeno je poređenje performansi prilikom upotrebe različitih principa fazi zaključivanja, kao i poređenje optimizovanog samopodešavajućeg fazi-logičkog upravljačkog sistema sa linearno-kvadratnim regulatorom.</description><subject>active vibration reduction</subject><subject>aktivno prigušenje vibracija</subject><subject>fazi-logičko upravljanje</subject><subject>finite element method</subject><subject>fuzzy logic control</subject><subject>Mamdani inference methods</subject><subject>mamdani princip zaključivanja</subject><subject>metoda konačnih elemenata</subject><subject>modal analysis</subject><subject>modalna analiza</subject><subject>optimizacija rojem čestica</subject><subject>pametne tankozidne kompozitne strukture</subject><subject>particle swarm optimization</subject><subject>piezoelectric actuators</subject><subject>piezoelektrični aktuatori</subject><subject>smart thin-walled composite structures</subject><subject>Takagi-Sugeno-Kang princip zaključivanja nultog reda</subject><subject>zero-order Takagi-Sugeno-Kang inference method</subject><fulltext>true</fulltext><rsrctype>dissertation</rsrctype><creationdate>2013</creationdate><recordtype>dissertation</recordtype><sourceid>1GC</sourceid><recordid>eNqtjDsOwjAMQLswIOAOuUClQltBGfmpM2KPTHCppTSu7ATE7enAEXjLm96bZ_vTJ8BAztyxhxexGO6MDiDRxJ5C_gbv8WEcDyMrRTQaJbmYBHWZzTrwiqufF1l7Od-ObY5JeEQIYB1PtYvEQW2zKYqq2toD3T3xU2DsyV1ROYlDWxYTTV1X5brelX9cfQGAckvG</recordid><startdate>20130510</startdate><enddate>20130510</enddate><creator>Zorić Nemanja</creator><general>University of Belgrade, Faculty of Mechanical Engineering</general><scope>1GC</scope></search><sort><creationdate>20130510</creationdate><title>Dynamic behavior of smart thin-walled composite structures</title><author>Zorić Nemanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-europeana_collections_9200447_BibliographicResource_30000955431583</frbrgroupid><rsrctype>dissertations</rsrctype><prefilter>dissertations</prefilter><language>srp</language><creationdate>2013</creationdate><topic>active vibration reduction</topic><topic>aktivno prigušenje vibracija</topic><topic>fazi-logičko upravljanje</topic><topic>finite element method</topic><topic>fuzzy logic control</topic><topic>Mamdani inference methods</topic><topic>mamdani princip zaključivanja</topic><topic>metoda konačnih elemenata</topic><topic>modal analysis</topic><topic>modalna analiza</topic><topic>optimizacija rojem čestica</topic><topic>pametne tankozidne kompozitne strukture</topic><topic>particle swarm optimization</topic><topic>piezoelectric actuators</topic><topic>piezoelektrični aktuatori</topic><topic>smart thin-walled composite structures</topic><topic>Takagi-Sugeno-Kang princip zaključivanja nultog reda</topic><topic>zero-order Takagi-Sugeno-Kang inference method</topic><toplevel>online_resources</toplevel><creatorcontrib>Zorić Nemanja</creatorcontrib><collection>Europeana Collections</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zorić Nemanja</au><format>dissertation</format><genre>dissertation</genre><ristype>THES</ristype><Advisor>Mladenović Nikola</Advisor><Advisor>Mitrović Zoran</Advisor><Advisor>Simonović Aleksandar</Advisor><Advisor>Rusov Srđan</Advisor><Advisor>Lazarević Mihailo</Advisor><btitle>Dynamic behavior of smart thin-walled composite structures</btitle><date>2013-05-10</date><risdate>2013</risdate><abstract>This doctoral dissertation deals with optimization and active vibration suppression of smart thin-walled composite structures by using piezoelectric actuators and sensors. Mathematical model of plate composite structure with integrated actuators and sensors is developed. The problem is formulated using the finite element method based on the third order shear deformation theory. Constitutive equations and the strain - displacement relations are linear. In further work, the problem of determination of optimal sizes, positions and orientations of actuator – sensor pairs are presented and, after that, objective functions and constraints are defined. Also, the integration of finite element method and particle swarm optimization is performed and using defined optimization criteria, the optimization of sizes, positions and orientations of five actuator – sensor pairs on square cantilever composite is performed. The cantilever composite plates have following orientation of layers: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Actuators and sensors considered in dissertation are collocated. In order to overcome problems during conventional control algorithm synthesis which occur due to vibration’s stochastic nature, the optimized self-tuning fuzzy logic controller is presented. The main idea of proposed controller is amplitude monitoring and self-tuning of input scaling factors based on amplitude. Membership functions are parameterized and optimal combination of parameters are found by using the particle swarm optimization method based on previously defined optimization criteria. Two inference methods are considered: the Mamdani and zero-order Takagi-Sugeno-Kang inference methods. Numerical studies are provided for composite cantilever beam and composite cantilever plate for both free and forced vibrations. Single-input single-output (SISO) configuration is considered for the cantilever beam and multiple-input multiple-output (MIMO) configuration is considered for cantilever plate. Comparisons of control performances for these two types of inference methods as well as optimized self-tuning fuzzy logic controller with linear quadratic regulator are performed.
Ova doktorska disertacija bavi se optimizacijom i aktivnim prigušenjem vibracija pametnih tankozidnih kompozitnih struktura pomoću piezoelektričnih aktuatora i senzora. Razvijen je matematički model pločaste kompozitne strukture sa integrisanim aktuatorima i senzorima. Problem je definisan metodom konačnih elemenata bazirane na teoriji smicanja trećeg reda. Konstitutivne jednačine i veza između pomeranja i deformacija su linearne. U daljem radu, predstavljen je problem određivanja optimalnih veličina, položaja i orijentacija aktuator – senzor parova, a zatim su definisane funkcija cilja i ograničenja. Takođe, izvršena je sinteza metode konačnih elemenata i optimizacije rojem čestica i primenom definisanih kriterijuma optimizacije, izvršena je optimizacija veličine, položaja i orijentacije pet aktuator-senzor parova na kvadratnim uklještenim kompozitnim pločama sa sledećim konfiguracijama slojeva: (90°/0°/90°/0°)S, (90°/0°/90°/0°/90°/0°/90°/0°) i (45°/-45°/45°/-45°/45°/-45°/45°/-45°). Aktuatori i senzori, koji se razmatraju u ovoj disertaciji, jednakih su dimenzija, isto su orijentisani i nalaze se na suprotnim stranama ploče: aktuator na gornjoj strani, a senzor na donjoj strani ploče. Radi prevazilaženja problema prilikom sinteze konvencionalnih upravljačkih algoritama koji se javljaju usled stohastične prirode vibracija, predstavljen je optimizovani samopodešavajući fazi-logički upravljački sistem. Glavna ideja ovog upravljačkog sistema je praćenje amplitude i samopodešavanje ulaznih skalirajućih faktora na osnovu amplitude. Funkcije pripadnosti su parametrizovane, a optimalna kombinacija parametara nađena je pomoću optimizacije rojem čestica na osnovu definisanih kriterijuma optimizacije. Razmatrana su dva principa zaključivanja: Mamdani princip zaključivanja i Takagi-Sugeno-Kang princip zaključivanja nultog reda. Numerički primeri su dati za kompozitnu konzolu i kompozitnu uklještenu ploču za slobodne i prinudne vibracije. Za konzolu razmatrana je jedno-ulazno- jedno-izlazna („Single input – single output“, „SISO“) konfiguracija, a za ploču više-ulazno-više-izlazna („Multiple inputs – multiple outputs“, „MIMO“) konfiguracija. Izvršeno je poređenje performansi prilikom upotrebe različitih principa fazi zaključivanja, kao i poređenje optimizovanog samopodešavajućeg fazi-logičkog upravljačkog sistema sa linearno-kvadratnim regulatorom.</abstract><pub>University of Belgrade, Faculty of Mechanical Engineering</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | srp |
recordid | cdi_europeana_collections_9200447_BibliographicResource_3000095543158 |
source | Europeana Collections |
subjects | active vibration reduction aktivno prigušenje vibracija fazi-logičko upravljanje finite element method fuzzy logic control Mamdani inference methods mamdani princip zaključivanja metoda konačnih elemenata modal analysis modalna analiza optimizacija rojem čestica pametne tankozidne kompozitne strukture particle swarm optimization piezoelectric actuators piezoelektrični aktuatori smart thin-walled composite structures Takagi-Sugeno-Kang princip zaključivanja nultog reda zero-order Takagi-Sugeno-Kang inference method |
title | Dynamic behavior of smart thin-walled composite structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-europeana_1GC&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.genre=dissertation&rft.btitle=Dynamic%20behavior%20of%20smart%20thin-walled%20composite%20structures&rft.au=Zori%C4%87%20Nemanja&rft.date=2013-05-10&rft_id=info:doi/&rft_dat=%3Ceuropeana_1GC%3E9200447_BibliographicResource_3000095543158%3C/europeana_1GC%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |