Learning domain-specific grammars from a small number of examples

In this paper we investigate the problem of grammar inference from a different perspective. The common approach is to try to infer a grammar directly from example sentences, which either requires a large training set or suffers from bad accuracy. We instead view it as a problem of grammar restrictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lange, Herbert, Ljunglöf, Peter
Format: Web Resource
Sprache:eng ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lange, Herbert
Ljunglöf, Peter
description In this paper we investigate the problem of grammar inference from a different perspective. The common approach is to try to infer a grammar directly from example sentences, which either requires a large training set or suffers from bad accuracy. We instead view it as a problem of grammar restriction or sub-grammar extraction. We start from a large-scale resource grammar and a small number of examples, and find a sub-grammar that still covers all the examples. To do this we formulate the problem as a constraint satisfaction problem, and use an existing constraint solver to find the optimal grammar. We have made experiments with English, Finnish, German, Swedish and Spanish, which show that 10–20 examples are often sufficient to learn an interesting domain grammar. Possible applications include computer-assisted language learning, domain-specific dialogue systems, computer games, Q/A-systems, and others.
format Web Resource
fullrecord <record><control><sourceid>europeana_1GC</sourceid><recordid>TN_cdi_europeana_collections_2048427_item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2048427_item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ</sourcerecordid><originalsourceid>FETCH-europeana_collections_2048427_item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ3</originalsourceid><addsrcrecordid>eNqtzEsKwjAQANBuXIh6h1ygIP1Yt1JbNYgS8IebMMZJCWSSkrTg8d14BFdv96bJ5ogQnHEde3sC49LYozLaKNYFIIIQmQ6eGLBIYC1zI70wMK8ZfoB6i3GeTDTYiIufs4S3zaXepzgG3yM4kMpbi2ow3kWZLYt1kVXSDEgy57u6eIizyLcHkZWne_NsW16W12p1E-LK879mXwFqTL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Learning domain-specific grammars from a small number of examples</title><source>Europeana Collections</source><creator>Lange, Herbert ; Ljunglöf, Peter</creator><creatorcontrib>Lange, Herbert ; Ljunglöf, Peter</creatorcontrib><description>In this paper we investigate the problem of grammar inference from a different perspective. The common approach is to try to infer a grammar directly from example sentences, which either requires a large training set or suffers from bad accuracy. We instead view it as a problem of grammar restriction or sub-grammar extraction. We start from a large-scale resource grammar and a small number of examples, and find a sub-grammar that still covers all the examples. To do this we formulate the problem as a constraint satisfaction problem, and use an existing constraint solver to find the optimal grammar. We have made experiments with English, Finnish, German, Swedish and Spanish, which show that 10–20 examples are often sufficient to learn an interesting domain grammar. Possible applications include computer-assisted language learning, domain-specific dialogue systems, computer games, Q/A-systems, and others.</description><language>eng ; ger</language><publisher>Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)</publisher><subject>Beispiel ; Computerlinguistik ; Constraint-Erfüllung ; Fremdsprachenlernen ; Grammatik ; Kontrastive Grammatik ; Sprache ; Zweisprachigkeit</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://data.europeana.eu/item/2048427/item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ$$EHTML$$P50$$Geuropeana$$Hfree_for_read</linktohtml><link.rule.ids>777,38498,75925</link.rule.ids><linktorsrc>$$Uhttps://data.europeana.eu/item/2048427/item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ$$EView_record_in_Europeana$$FView_record_in_$$GEuropeana$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lange, Herbert</creatorcontrib><creatorcontrib>Ljunglöf, Peter</creatorcontrib><title>Learning domain-specific grammars from a small number of examples</title><description>In this paper we investigate the problem of grammar inference from a different perspective. The common approach is to try to infer a grammar directly from example sentences, which either requires a large training set or suffers from bad accuracy. We instead view it as a problem of grammar restriction or sub-grammar extraction. We start from a large-scale resource grammar and a small number of examples, and find a sub-grammar that still covers all the examples. To do this we formulate the problem as a constraint satisfaction problem, and use an existing constraint solver to find the optimal grammar. We have made experiments with English, Finnish, German, Swedish and Spanish, which show that 10–20 examples are often sufficient to learn an interesting domain grammar. Possible applications include computer-assisted language learning, domain-specific dialogue systems, computer games, Q/A-systems, and others.</description><subject>Beispiel</subject><subject>Computerlinguistik</subject><subject>Constraint-Erfüllung</subject><subject>Fremdsprachenlernen</subject><subject>Grammatik</subject><subject>Kontrastive Grammatik</subject><subject>Sprache</subject><subject>Zweisprachigkeit</subject><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><creationdate>2022</creationdate><recordtype>web_resource</recordtype><sourceid>1GC</sourceid><recordid>eNqtzEsKwjAQANBuXIh6h1ygIP1Yt1JbNYgS8IebMMZJCWSSkrTg8d14BFdv96bJ5ogQnHEde3sC49LYozLaKNYFIIIQmQ6eGLBIYC1zI70wMK8ZfoB6i3GeTDTYiIufs4S3zaXepzgG3yM4kMpbi2ow3kWZLYt1kVXSDEgy57u6eIizyLcHkZWne_NsW16W12p1E-LK879mXwFqTL4</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Lange, Herbert</creator><creator>Ljunglöf, Peter</creator><general>Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)</general><general>Setúbal : SciTePress</general><scope>1GC</scope></search><sort><creationdate>20220826</creationdate><title>Learning domain-specific grammars from a small number of examples</title><author>Lange, Herbert ; Ljunglöf, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-europeana_collections_2048427_item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ3</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng ; ger</language><creationdate>2022</creationdate><topic>Beispiel</topic><topic>Computerlinguistik</topic><topic>Constraint-Erfüllung</topic><topic>Fremdsprachenlernen</topic><topic>Grammatik</topic><topic>Kontrastive Grammatik</topic><topic>Sprache</topic><topic>Zweisprachigkeit</topic><toplevel>online_resources</toplevel><creatorcontrib>Lange, Herbert</creatorcontrib><creatorcontrib>Ljunglöf, Peter</creatorcontrib><collection>Europeana Collections</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lange, Herbert</au><au>Ljunglöf, Peter</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Learning domain-specific grammars from a small number of examples</btitle><date>2022-08-26</date><risdate>2022</risdate><abstract>In this paper we investigate the problem of grammar inference from a different perspective. The common approach is to try to infer a grammar directly from example sentences, which either requires a large training set or suffers from bad accuracy. We instead view it as a problem of grammar restriction or sub-grammar extraction. We start from a large-scale resource grammar and a small number of examples, and find a sub-grammar that still covers all the examples. To do this we formulate the problem as a constraint satisfaction problem, and use an existing constraint solver to find the optimal grammar. We have made experiments with English, Finnish, German, Swedish and Spanish, which show that 10–20 examples are often sufficient to learn an interesting domain grammar. Possible applications include computer-assisted language learning, domain-specific dialogue systems, computer games, Q/A-systems, and others.</abstract><pub>Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; ger
recordid cdi_europeana_collections_2048427_item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ
source Europeana Collections
subjects Beispiel
Computerlinguistik
Constraint-Erfüllung
Fremdsprachenlernen
Grammatik
Kontrastive Grammatik
Sprache
Zweisprachigkeit
title Learning domain-specific grammars from a small number of examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-europeana_1GC&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Learning%20domain-specific%20grammars%20from%20a%20small%20number%20of%20examples&rft.au=Lange,%20Herbert&rft.date=2022-08-26&rft_id=info:doi/&rft_dat=%3Ceuropeana_1GC%3E2048427_item_3JGC4XQOQ3DIQ25NWEZFFJ55U76VQQUJ%3C/europeana_1GC%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true