From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics
We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Str...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Web Resource |
Sprache: | eng ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Veldman, Jip Fisseni, Bernhard Schröder, Bernhard Koepke, Peter |
description | We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof. |
format | Web Resource |
fullrecord | <record><control><sourceid>europeana_1GC</sourceid><recordid>TN_cdi_europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV</sourcerecordid><originalsourceid>FETCH-europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV3</originalsourceid><addsrcrecordid>eNqtjM0KgkAURt20iOod7gsUofazLXO00P40F0LIMFxrQL0yM0KPn0Gb9q0OfJzvDK07U1TDWRGVkOLLaDAEET2kmMFOakGd0ghXbBVqbAw3khpIjOqE6foJSlI_b9lAzM0T694UemwNSl5pnHw5sg7MT71wip2iFnnDC0FVheKT1YU9d9euvSqkwbqwj0HMWB5GHsuzpe94p2QR3zb7S7B1zkGSOX-NvQExeVd9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</title><source>Europeana Collections</source><creator>Veldman, Jip ; Fisseni, Bernhard ; Schröder, Bernhard ; Koepke, Peter</creator><creatorcontrib>Veldman, Jip ; Fisseni, Bernhard ; Schröder, Bernhard ; Koepke, Peter</creatorcontrib><description>We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.</description><language>eng ; ger</language><publisher>Tübingen : Narr</publisher><subject>Automatisches Beweisverfahren ; Computerlinguistik ; Formale Semantik ; Natürliche Sprache ; Sprache ; Texttechnologie</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://data.europeana.eu/item/2048427/item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV$$EHTML$$P50$$Geuropeana$$Hfree_for_read</linktohtml><link.rule.ids>778,38500,75927</link.rule.ids><linktorsrc>$$Uhttps://data.europeana.eu/item/2048427/item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV$$EView_record_in_Europeana$$FView_record_in_$$GEuropeana$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Veldman, Jip</creatorcontrib><creatorcontrib>Fisseni, Bernhard</creatorcontrib><creatorcontrib>Schröder, Bernhard</creatorcontrib><creatorcontrib>Koepke, Peter</creatorcontrib><title>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</title><description>We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.</description><subject>Automatisches Beweisverfahren</subject><subject>Computerlinguistik</subject><subject>Formale Semantik</subject><subject>Natürliche Sprache</subject><subject>Sprache</subject><subject>Texttechnologie</subject><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><creationdate>2018</creationdate><recordtype>web_resource</recordtype><sourceid>1GC</sourceid><recordid>eNqtjM0KgkAURt20iOod7gsUofazLXO00P40F0LIMFxrQL0yM0KPn0Gb9q0OfJzvDK07U1TDWRGVkOLLaDAEET2kmMFOakGd0ghXbBVqbAw3khpIjOqE6foJSlI_b9lAzM0T694UemwNSl5pnHw5sg7MT71wip2iFnnDC0FVheKT1YU9d9euvSqkwbqwj0HMWB5GHsuzpe94p2QR3zb7S7B1zkGSOX-NvQExeVd9</recordid><startdate>20181122</startdate><enddate>20181122</enddate><creator>Veldman, Jip</creator><creator>Fisseni, Bernhard</creator><creator>Schröder, Bernhard</creator><creator>Koepke, Peter</creator><general>Tübingen : Narr</general><scope>1GC</scope></search><sort><creationdate>20181122</creationdate><title>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</title><author>Veldman, Jip ; Fisseni, Bernhard ; Schröder, Bernhard ; Koepke, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV3</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng ; ger</language><creationdate>2018</creationdate><topic>Automatisches Beweisverfahren</topic><topic>Computerlinguistik</topic><topic>Formale Semantik</topic><topic>Natürliche Sprache</topic><topic>Sprache</topic><topic>Texttechnologie</topic><toplevel>online_resources</toplevel><creatorcontrib>Veldman, Jip</creatorcontrib><creatorcontrib>Fisseni, Bernhard</creatorcontrib><creatorcontrib>Schröder, Bernhard</creatorcontrib><creatorcontrib>Koepke, Peter</creatorcontrib><collection>Europeana Collections</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Veldman, Jip</au><au>Fisseni, Bernhard</au><au>Schröder, Bernhard</au><au>Koepke, Peter</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</btitle><date>2018-11-22</date><risdate>2018</risdate><abstract>We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.</abstract><pub>Tübingen : Narr</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; ger |
recordid | cdi_europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV |
source | Europeana Collections |
subjects | Automatisches Beweisverfahren Computerlinguistik Formale Semantik Natürliche Sprache Sprache Texttechnologie |
title | From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-europeana_1GC&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=From%20Proof%20Texts%20to%20Logic.%20Discourse%20Representation%20Structures%20for%20Proof%20Texts%20in%20Mathematics&rft.au=Veldman,%20Jip&rft.date=2018-11-22&rft_id=info:doi/&rft_dat=%3Ceuropeana_1GC%3E2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV%3C/europeana_1GC%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |