From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics

We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Veldman, Jip, Fisseni, Bernhard, Schröder, Bernhard, Koepke, Peter
Format: Web Resource
Sprache:eng ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Veldman, Jip
Fisseni, Bernhard
Schröder, Bernhard
Koepke, Peter
description We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.
format Web Resource
fullrecord <record><control><sourceid>europeana_1GC</sourceid><recordid>TN_cdi_europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV</sourcerecordid><originalsourceid>FETCH-europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV3</originalsourceid><addsrcrecordid>eNqtjM0KgkAURt20iOod7gsUofazLXO00P40F0LIMFxrQL0yM0KPn0Gb9q0OfJzvDK07U1TDWRGVkOLLaDAEET2kmMFOakGd0ghXbBVqbAw3khpIjOqE6foJSlI_b9lAzM0T694UemwNSl5pnHw5sg7MT71wip2iFnnDC0FVheKT1YU9d9euvSqkwbqwj0HMWB5GHsuzpe94p2QR3zb7S7B1zkGSOX-NvQExeVd9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</title><source>Europeana Collections</source><creator>Veldman, Jip ; Fisseni, Bernhard ; Schröder, Bernhard ; Koepke, Peter</creator><creatorcontrib>Veldman, Jip ; Fisseni, Bernhard ; Schröder, Bernhard ; Koepke, Peter</creatorcontrib><description>We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.</description><language>eng ; ger</language><publisher>Tübingen : Narr</publisher><subject>Automatisches Beweisverfahren ; Computerlinguistik ; Formale Semantik ; Natürliche Sprache ; Sprache ; Texttechnologie</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://data.europeana.eu/item/2048427/item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV$$EHTML$$P50$$Geuropeana$$Hfree_for_read</linktohtml><link.rule.ids>778,38500,75927</link.rule.ids><linktorsrc>$$Uhttps://data.europeana.eu/item/2048427/item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV$$EView_record_in_Europeana$$FView_record_in_$$GEuropeana$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Veldman, Jip</creatorcontrib><creatorcontrib>Fisseni, Bernhard</creatorcontrib><creatorcontrib>Schröder, Bernhard</creatorcontrib><creatorcontrib>Koepke, Peter</creatorcontrib><title>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</title><description>We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.</description><subject>Automatisches Beweisverfahren</subject><subject>Computerlinguistik</subject><subject>Formale Semantik</subject><subject>Natürliche Sprache</subject><subject>Sprache</subject><subject>Texttechnologie</subject><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><creationdate>2018</creationdate><recordtype>web_resource</recordtype><sourceid>1GC</sourceid><recordid>eNqtjM0KgkAURt20iOod7gsUofazLXO00P40F0LIMFxrQL0yM0KPn0Gb9q0OfJzvDK07U1TDWRGVkOLLaDAEET2kmMFOakGd0ghXbBVqbAw3khpIjOqE6foJSlI_b9lAzM0T694UemwNSl5pnHw5sg7MT71wip2iFnnDC0FVheKT1YU9d9euvSqkwbqwj0HMWB5GHsuzpe94p2QR3zb7S7B1zkGSOX-NvQExeVd9</recordid><startdate>20181122</startdate><enddate>20181122</enddate><creator>Veldman, Jip</creator><creator>Fisseni, Bernhard</creator><creator>Schröder, Bernhard</creator><creator>Koepke, Peter</creator><general>Tübingen : Narr</general><scope>1GC</scope></search><sort><creationdate>20181122</creationdate><title>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</title><author>Veldman, Jip ; Fisseni, Bernhard ; Schröder, Bernhard ; Koepke, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV3</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng ; ger</language><creationdate>2018</creationdate><topic>Automatisches Beweisverfahren</topic><topic>Computerlinguistik</topic><topic>Formale Semantik</topic><topic>Natürliche Sprache</topic><topic>Sprache</topic><topic>Texttechnologie</topic><toplevel>online_resources</toplevel><creatorcontrib>Veldman, Jip</creatorcontrib><creatorcontrib>Fisseni, Bernhard</creatorcontrib><creatorcontrib>Schröder, Bernhard</creatorcontrib><creatorcontrib>Koepke, Peter</creatorcontrib><collection>Europeana Collections</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Veldman, Jip</au><au>Fisseni, Bernhard</au><au>Schröder, Bernhard</au><au>Koepke, Peter</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics</btitle><date>2018-11-22</date><risdate>2018</risdate><abstract>We present an extension to Discourse Representation Theory that can be used to analyze mathematical texts written in the commonly used semi-formal language of mathematics (or at least a subset of it). Moreover, we describe an algorithm that can be used to check the resulting Proof Representation Structures for their logical validity and adequacy as a proof.</abstract><pub>Tübingen : Narr</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; ger
recordid cdi_europeana_collections_2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV
source Europeana Collections
subjects Automatisches Beweisverfahren
Computerlinguistik
Formale Semantik
Natürliche Sprache
Sprache
Texttechnologie
title From Proof Texts to Logic. Discourse Representation Structures for Proof Texts in Mathematics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-europeana_1GC&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=From%20Proof%20Texts%20to%20Logic.%20Discourse%20Representation%20Structures%20for%20Proof%20Texts%20in%20Mathematics&rft.au=Veldman,%20Jip&rft.date=2018-11-22&rft_id=info:doi/&rft_dat=%3Ceuropeana_1GC%3E2048427_item_2NGMFFZHLCFZV6E3COS5MUAIQGB3PGSV%3C/europeana_1GC%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true