Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment

Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2011-05, Vol.32 (3), p.819-825
Hauptverfasser: Porto, P Di, Crosignani, B, Ciattoni, A, Liu, H C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 3
container_start_page 819
container_title European journal of physics
container_volume 32
creator Porto, P Di
Crosignani, B
Ciattoni, A
Liu, H C
description Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)
doi_str_mv 10.1088/0143-0807/32/3/017
format Article
fullrecord <record><control><sourceid>eric_iop_p</sourceid><recordid>TN_cdi_eric_primary_EJ931550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ931550</ericid><sourcerecordid>EJ931550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwBxCDF4QYQn3-SBw2WpUvVWKBEVmOY9OgEEdxqrb_HldBXbow-az3ee_uPYQugdwBkXJCgLOESJJNGJ2w-M2O0AhYCknKCT9Goz1wis5C-CYEQAIfoc-p7fpON-VNwK3udOk391jjdrkNldE1Xust9qse69o3X7hfWlxXjQ3YOzxdOeeb6GusLWsbxc6vq0jZTWu76sc2_Tk6cboO9uLvHaOPx_n77DlZvD29zB4WiWEZ6RNjBNM2c5kQzjBLNTBrNZepNIyCSAvInQZdCGmcLEReCJqnhFpTcA1ZSdgY0aGv6XwInXWqjQvobquAqN2B1C6_2uVXjKpYQRZN14Op1SFGdfEKpgp7J-UgOE8hclcDF0OZvTx_zRkIsZudDHLl2_-NvT3kDznVlo79AqQWidU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</title><source>Institute of Physics Journals</source><creator>Porto, P Di ; Crosignani, B ; Ciattoni, A ; Liu, H C</creator><creatorcontrib>Porto, P Di ; Crosignani, B ; Ciattoni, A ; Liu, H C</creatorcontrib><description>Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/0143-0807/32/3/017</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calculus ; Communication, education, history, and philosophy ; Equations (Mathematics) ; Exact sciences and technology ; General physics ; Geometric Concepts ; Physics ; Physics literature and publications ; Probability ; Science Experiments ; Science Instruction ; Scientific Principles ; Surveys and tutorial papers, resource letters</subject><ispartof>European journal of physics, 2011-05, Vol.32 (3), p.819-825</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</citedby><cites>FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0143-0807/32/3/017/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ931550$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24154461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Porto, P Di</creatorcontrib><creatorcontrib>Crosignani, B</creatorcontrib><creatorcontrib>Ciattoni, A</creatorcontrib><creatorcontrib>Liu, H C</creatorcontrib><title>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</title><title>European journal of physics</title><description>Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)</description><subject>Calculus</subject><subject>Communication, education, history, and philosophy</subject><subject>Equations (Mathematics)</subject><subject>Exact sciences and technology</subject><subject>General physics</subject><subject>Geometric Concepts</subject><subject>Physics</subject><subject>Physics literature and publications</subject><subject>Probability</subject><subject>Science Experiments</subject><subject>Science Instruction</subject><subject>Scientific Principles</subject><subject>Surveys and tutorial papers, resource letters</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwBxCDF4QYQn3-SBw2WpUvVWKBEVmOY9OgEEdxqrb_HldBXbow-az3ee_uPYQugdwBkXJCgLOESJJNGJ2w-M2O0AhYCknKCT9Goz1wis5C-CYEQAIfoc-p7fpON-VNwK3udOk391jjdrkNldE1Xust9qse69o3X7hfWlxXjQ3YOzxdOeeb6GusLWsbxc6vq0jZTWu76sc2_Tk6cboO9uLvHaOPx_n77DlZvD29zB4WiWEZ6RNjBNM2c5kQzjBLNTBrNZepNIyCSAvInQZdCGmcLEReCJqnhFpTcA1ZSdgY0aGv6XwInXWqjQvobquAqN2B1C6_2uVXjKpYQRZN14Op1SFGdfEKpgp7J-UgOE8hclcDF0OZvTx_zRkIsZudDHLl2_-NvT3kDznVlo79AqQWidU</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Porto, P Di</creator><creator>Crosignani, B</creator><creator>Ciattoni, A</creator><creator>Liu, H C</creator><general>IOP Publishing</general><general>Institute of Physics Publishing</general><general>Institute of Physics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110501</creationdate><title>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</title><author>Porto, P Di ; Crosignani, B ; Ciattoni, A ; Liu, H C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus</topic><topic>Communication, education, history, and philosophy</topic><topic>Equations (Mathematics)</topic><topic>Exact sciences and technology</topic><topic>General physics</topic><topic>Geometric Concepts</topic><topic>Physics</topic><topic>Physics literature and publications</topic><topic>Probability</topic><topic>Science Experiments</topic><topic>Science Instruction</topic><topic>Scientific Principles</topic><topic>Surveys and tutorial papers, resource letters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porto, P Di</creatorcontrib><creatorcontrib>Crosignani, B</creatorcontrib><creatorcontrib>Ciattoni, A</creatorcontrib><creatorcontrib>Liu, H C</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porto, P Di</au><au>Crosignani, B</au><au>Ciattoni, A</au><au>Liu, H C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ931550</ericid><atitle>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</atitle><jtitle>European journal of physics</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>32</volume><issue>3</issue><spage>819</spage><epage>825</epage><pages>819-825</pages><issn>0143-0807</issn><eissn>1361-6404</eissn><abstract>Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0143-0807/32/3/017</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-0807
ispartof European journal of physics, 2011-05, Vol.32 (3), p.819-825
issn 0143-0807
1361-6404
language eng
recordid cdi_eric_primary_EJ931550
source Institute of Physics Journals
subjects Calculus
Communication, education, history, and philosophy
Equations (Mathematics)
Exact sciences and technology
General physics
Geometric Concepts
Physics
Physics literature and publications
Probability
Science Experiments
Science Instruction
Scientific Principles
Surveys and tutorial papers, resource letters
title Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bertrand's%20paradox:%20a%20physical%20way%20out%20along%20the%20lines%20of%20Buffon's%20needle%20throwing%20experiment&rft.jtitle=European%20journal%20of%20physics&rft.au=Porto,%20P%20Di&rft.date=2011-05-01&rft.volume=32&rft.issue=3&rft.spage=819&rft.epage=825&rft.pages=819-825&rft.issn=0143-0807&rft.eissn=1361-6404&rft_id=info:doi/10.1088/0143-0807/32/3/017&rft_dat=%3Ceric_iop_p%3EEJ931550%3C/eric_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ931550&rfr_iscdi=true