Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment
Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of e...
Gespeichert in:
Veröffentlicht in: | European journal of physics 2011-05, Vol.32 (3), p.819-825 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 3 |
container_start_page | 819 |
container_title | European journal of physics |
container_volume | 32 |
creator | Porto, P Di Crosignani, B Ciattoni, A Liu, H C |
description | Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.) |
doi_str_mv | 10.1088/0143-0807/32/3/017 |
format | Article |
fullrecord | <record><control><sourceid>eric_iop_p</sourceid><recordid>TN_cdi_eric_primary_EJ931550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ931550</ericid><sourcerecordid>EJ931550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwBxCDF4QYQn3-SBw2WpUvVWKBEVmOY9OgEEdxqrb_HldBXbow-az3ee_uPYQugdwBkXJCgLOESJJNGJ2w-M2O0AhYCknKCT9Goz1wis5C-CYEQAIfoc-p7fpON-VNwK3udOk391jjdrkNldE1Xust9qse69o3X7hfWlxXjQ3YOzxdOeeb6GusLWsbxc6vq0jZTWu76sc2_Tk6cboO9uLvHaOPx_n77DlZvD29zB4WiWEZ6RNjBNM2c5kQzjBLNTBrNZepNIyCSAvInQZdCGmcLEReCJqnhFpTcA1ZSdgY0aGv6XwInXWqjQvobquAqN2B1C6_2uVXjKpYQRZN14Op1SFGdfEKpgp7J-UgOE8hclcDF0OZvTx_zRkIsZudDHLl2_-NvT3kDznVlo79AqQWidU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</title><source>Institute of Physics Journals</source><creator>Porto, P Di ; Crosignani, B ; Ciattoni, A ; Liu, H C</creator><creatorcontrib>Porto, P Di ; Crosignani, B ; Ciattoni, A ; Liu, H C</creatorcontrib><description>Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/0143-0807/32/3/017</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calculus ; Communication, education, history, and philosophy ; Equations (Mathematics) ; Exact sciences and technology ; General physics ; Geometric Concepts ; Physics ; Physics literature and publications ; Probability ; Science Experiments ; Science Instruction ; Scientific Principles ; Surveys and tutorial papers, resource letters</subject><ispartof>European journal of physics, 2011-05, Vol.32 (3), p.819-825</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</citedby><cites>FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0143-0807/32/3/017/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ931550$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24154461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Porto, P Di</creatorcontrib><creatorcontrib>Crosignani, B</creatorcontrib><creatorcontrib>Ciattoni, A</creatorcontrib><creatorcontrib>Liu, H C</creatorcontrib><title>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</title><title>European journal of physics</title><description>Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)</description><subject>Calculus</subject><subject>Communication, education, history, and philosophy</subject><subject>Equations (Mathematics)</subject><subject>Exact sciences and technology</subject><subject>General physics</subject><subject>Geometric Concepts</subject><subject>Physics</subject><subject>Physics literature and publications</subject><subject>Probability</subject><subject>Science Experiments</subject><subject>Science Instruction</subject><subject>Scientific Principles</subject><subject>Surveys and tutorial papers, resource letters</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwBxCDF4QYQn3-SBw2WpUvVWKBEVmOY9OgEEdxqrb_HldBXbow-az3ee_uPYQugdwBkXJCgLOESJJNGJ2w-M2O0AhYCknKCT9Goz1wis5C-CYEQAIfoc-p7fpON-VNwK3udOk391jjdrkNldE1Xust9qse69o3X7hfWlxXjQ3YOzxdOeeb6GusLWsbxc6vq0jZTWu76sc2_Tk6cboO9uLvHaOPx_n77DlZvD29zB4WiWEZ6RNjBNM2c5kQzjBLNTBrNZepNIyCSAvInQZdCGmcLEReCJqnhFpTcA1ZSdgY0aGv6XwInXWqjQvobquAqN2B1C6_2uVXjKpYQRZN14Op1SFGdfEKpgp7J-UgOE8hclcDF0OZvTx_zRkIsZudDHLl2_-NvT3kDznVlo79AqQWidU</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Porto, P Di</creator><creator>Crosignani, B</creator><creator>Ciattoni, A</creator><creator>Liu, H C</creator><general>IOP Publishing</general><general>Institute of Physics Publishing</general><general>Institute of Physics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110501</creationdate><title>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</title><author>Porto, P Di ; Crosignani, B ; Ciattoni, A ; Liu, H C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-cc53ae7f755fc3e2a13eea4868c32156b19fa1ab58cf8b59b529602ecb4a17d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus</topic><topic>Communication, education, history, and philosophy</topic><topic>Equations (Mathematics)</topic><topic>Exact sciences and technology</topic><topic>General physics</topic><topic>Geometric Concepts</topic><topic>Physics</topic><topic>Physics literature and publications</topic><topic>Probability</topic><topic>Science Experiments</topic><topic>Science Instruction</topic><topic>Scientific Principles</topic><topic>Surveys and tutorial papers, resource letters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porto, P Di</creatorcontrib><creatorcontrib>Crosignani, B</creatorcontrib><creatorcontrib>Ciattoni, A</creatorcontrib><creatorcontrib>Liu, H C</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porto, P Di</au><au>Crosignani, B</au><au>Ciattoni, A</au><au>Liu, H C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ931550</ericid><atitle>Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment</atitle><jtitle>European journal of physics</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>32</volume><issue>3</issue><spage>819</spage><epage>825</epage><pages>819-825</pages><issn>0143-0807</issn><eissn>1361-6404</eissn><abstract>Bertrand's paradox (Bertrand 1889 "Calcul des Probabilites" (Paris: Gauthier-Villars)) can be considered as a cautionary memento, to practitioners and students of probability calculus alike, of the possible ambiguous meaning of the term "at random" when the sample space of events is continuous. It deals with the existence of different possible answers to the following question: what is the probability that a chord, drawn at random in a circle of radius "R", is longer than the side R[square root]3 of an inscribed equilateral triangle? Physics can help to remove the ambiguity by identifying an actual experiment, whose outcome is obviously unique and prescribes the physical variables to which the term "random" can be correctly applied. In this paper, after briefly describing Bertrand's paradox, we associate it with an experiment, which is basically a variation of the famous Buffon's needle experiment (Buffon 1733 "Histoire de l'Acad. Roy. des. Sciences" pp 43-5; Buffon 1777 "Histoire naturelle, generale et particuliere" Supplement 4 46) for estimating the value of [pi]. Its outcome is compared with the analytic predictions of probability calculus, that is with the probability distribution of variables whose uniform distribution can be considered a sound implementation of complete randomness. (Contains 6 figures.)</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0143-0807/32/3/017</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-0807 |
ispartof | European journal of physics, 2011-05, Vol.32 (3), p.819-825 |
issn | 0143-0807 1361-6404 |
language | eng |
recordid | cdi_eric_primary_EJ931550 |
source | Institute of Physics Journals |
subjects | Calculus Communication, education, history, and philosophy Equations (Mathematics) Exact sciences and technology General physics Geometric Concepts Physics Physics literature and publications Probability Science Experiments Science Instruction Scientific Principles Surveys and tutorial papers, resource letters |
title | Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bertrand's%20paradox:%20a%20physical%20way%20out%20along%20the%20lines%20of%20Buffon's%20needle%20throwing%20experiment&rft.jtitle=European%20journal%20of%20physics&rft.au=Porto,%20P%20Di&rft.date=2011-05-01&rft.volume=32&rft.issue=3&rft.spage=819&rft.epage=825&rft.pages=819-825&rft.issn=0143-0807&rft.eissn=1361-6404&rft_id=info:doi/10.1088/0143-0807/32/3/017&rft_dat=%3Ceric_iop_p%3EEJ931550%3C/eric_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ931550&rfr_iscdi=true |