Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics

This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognition and instruction 2010-01, Vol.28 (4), p.433-474
Hauptverfasser: Saxe, Geoffrey B., Earnest, Darrell, Sitabkhan, Yasmin, Haldar, Lina C., Lewis, Katherine E., Zheng, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 4
container_start_page 433
container_title Cognition and instruction
container_volume 28
creator Saxe, Geoffrey B.
Earnest, Darrell
Sitabkhan, Yasmin
Haldar, Lina C.
Lewis, Katherine E.
Zheng, Ying
description This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.
doi_str_mv 10.1080/07370008.2010.511569
format Article
fullrecord <record><control><sourceid>jstor_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ901372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ901372</ericid><jstor_id>20787134</jstor_id><sourcerecordid>20787134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</originalsourceid><addsrcrecordid>eNp9kM1O3DAUhS1EJQbKG4AUdR9qJ7Gvs0IIDT_V0C4KiJ3lODZ4mNhT26Hi7XEUYMnqWvd85_jqIHRE8AnBHP_EUAPGmJ9UOK8oIZS1O2hBaF2VrMUPu2gxIeXE7KH9GNf5VVECC3T_d9xufUjWPRaX2ukgk33Rxe2Tdc_T7qzzYyrSky6uXdKPOhS_x6HLY2WdLqwrlhs9aJdkeC1uZOaGHKDid_TNyE3Uh-_zAN1dLG_Pr8rVn8vr87NVqWqAVPatAa0op51s2q4BUvUEgPWMdcyYToLsOVHQM2iNkZQarhQ2UjbAeKWVqQ_Qjzl3G_y_Ucck1n4MLn8pgHLOWI7LUDNDKvgYgzZiG-yQLxYEi6lA8VGgmAoUc4HZdjTbdLDq07L81WJSQ5Xl41lex-TDp15h4EDqJuuns26d8WGQ_33Y9CLJ140PJkinbBT1lwe8AWoYiwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758866177</pqid></control><display><type>article</type><title>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Saxe, Geoffrey B. ; Earnest, Darrell ; Sitabkhan, Yasmin ; Haldar, Lina C. ; Lewis, Katherine E. ; Zheng, Ying</creator><creatorcontrib>Saxe, Geoffrey B. ; Earnest, Darrell ; Sitabkhan, Yasmin ; Haldar, Lina C. ; Lewis, Katherine E. ; Zheng, Ying</creatorcontrib><description>This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.</description><identifier>ISSN: 0737-0008</identifier><identifier>EISSN: 1532-690X</identifier><identifier>DOI: 10.1080/07370008.2010.511569</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Cognition &amp; reasoning ; Comparative Analysis ; Educational Games ; Elementary School Mathematics ; Elementary school students ; Grade 5 ; Instructional design ; Integers ; Learning ; Mathematical Concepts ; Mathematical intervals ; Mathematics education ; Number Concepts ; Numbers ; Posttests ; Pretests ; Pretests Posttests ; Problem sets ; Quantification ; Teaching Methods ; Tutorials ; Tutoring ; Tutors</subject><ispartof>Cognition and instruction, 2010-01, Vol.28 (4), p.433-474</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>Copyright © 2010 Taylor &amp; Francis Group, LLC.</rights><rights>Copyright Routledge Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</citedby><cites>FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20787134$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20787134$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ901372$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Saxe, Geoffrey B.</creatorcontrib><creatorcontrib>Earnest, Darrell</creatorcontrib><creatorcontrib>Sitabkhan, Yasmin</creatorcontrib><creatorcontrib>Haldar, Lina C.</creatorcontrib><creatorcontrib>Lewis, Katherine E.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><title>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</title><title>Cognition and instruction</title><description>This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.</description><subject>Cognition &amp; reasoning</subject><subject>Comparative Analysis</subject><subject>Educational Games</subject><subject>Elementary School Mathematics</subject><subject>Elementary school students</subject><subject>Grade 5</subject><subject>Instructional design</subject><subject>Integers</subject><subject>Learning</subject><subject>Mathematical Concepts</subject><subject>Mathematical intervals</subject><subject>Mathematics education</subject><subject>Number Concepts</subject><subject>Numbers</subject><subject>Posttests</subject><subject>Pretests</subject><subject>Pretests Posttests</subject><subject>Problem sets</subject><subject>Quantification</subject><subject>Teaching Methods</subject><subject>Tutorials</subject><subject>Tutoring</subject><subject>Tutors</subject><issn>0737-0008</issn><issn>1532-690X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAUhS1EJQbKG4AUdR9qJ7Gvs0IIDT_V0C4KiJ3lODZ4mNhT26Hi7XEUYMnqWvd85_jqIHRE8AnBHP_EUAPGmJ9UOK8oIZS1O2hBaF2VrMUPu2gxIeXE7KH9GNf5VVECC3T_d9xufUjWPRaX2ukgk33Rxe2Tdc_T7qzzYyrSky6uXdKPOhS_x6HLY2WdLqwrlhs9aJdkeC1uZOaGHKDid_TNyE3Uh-_zAN1dLG_Pr8rVn8vr87NVqWqAVPatAa0op51s2q4BUvUEgPWMdcyYToLsOVHQM2iNkZQarhQ2UjbAeKWVqQ_Qjzl3G_y_Ucck1n4MLn8pgHLOWI7LUDNDKvgYgzZiG-yQLxYEi6lA8VGgmAoUc4HZdjTbdLDq07L81WJSQ5Xl41lex-TDp15h4EDqJuuns26d8WGQ_33Y9CLJ140PJkinbBT1lwe8AWoYiwo</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Saxe, Geoffrey B.</creator><creator>Earnest, Darrell</creator><creator>Sitabkhan, Yasmin</creator><creator>Haldar, Lina C.</creator><creator>Lewis, Katherine E.</creator><creator>Zheng, Ying</creator><general>Taylor &amp; Francis Group</general><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</title><author>Saxe, Geoffrey B. ; Earnest, Darrell ; Sitabkhan, Yasmin ; Haldar, Lina C. ; Lewis, Katherine E. ; Zheng, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cognition &amp; reasoning</topic><topic>Comparative Analysis</topic><topic>Educational Games</topic><topic>Elementary School Mathematics</topic><topic>Elementary school students</topic><topic>Grade 5</topic><topic>Instructional design</topic><topic>Integers</topic><topic>Learning</topic><topic>Mathematical Concepts</topic><topic>Mathematical intervals</topic><topic>Mathematics education</topic><topic>Number Concepts</topic><topic>Numbers</topic><topic>Posttests</topic><topic>Pretests</topic><topic>Pretests Posttests</topic><topic>Problem sets</topic><topic>Quantification</topic><topic>Teaching Methods</topic><topic>Tutorials</topic><topic>Tutoring</topic><topic>Tutors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saxe, Geoffrey B.</creatorcontrib><creatorcontrib>Earnest, Darrell</creatorcontrib><creatorcontrib>Sitabkhan, Yasmin</creatorcontrib><creatorcontrib>Haldar, Lina C.</creatorcontrib><creatorcontrib>Lewis, Katherine E.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Cognition and instruction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saxe, Geoffrey B.</au><au>Earnest, Darrell</au><au>Sitabkhan, Yasmin</au><au>Haldar, Lina C.</au><au>Lewis, Katherine E.</au><au>Zheng, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ901372</ericid><atitle>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</atitle><jtitle>Cognition and instruction</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>28</volume><issue>4</issue><spage>433</spage><epage>474</epage><pages>433-474</pages><issn>0737-0008</issn><eissn>1532-690X</eissn><abstract>This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/07370008.2010.511569</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0737-0008
ispartof Cognition and instruction, 2010-01, Vol.28 (4), p.433-474
issn 0737-0008
1532-690X
language eng
recordid cdi_eric_primary_EJ901372
source JSTOR Archive Collection A-Z Listing
subjects Cognition & reasoning
Comparative Analysis
Educational Games
Elementary School Mathematics
Elementary school students
Grade 5
Instructional design
Integers
Learning
Mathematical Concepts
Mathematical intervals
Mathematics education
Number Concepts
Numbers
Posttests
Pretests
Pretests Posttests
Problem sets
Quantification
Teaching Methods
Tutorials
Tutoring
Tutors
title Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supporting%20Generative%20Thinking%20About%20the%20Integer%20Number%20Line%20in%20Elementary%20Mathematics&rft.jtitle=Cognition%20and%20instruction&rft.au=Saxe,%20Geoffrey%20B.&rft.date=2010-01-01&rft.volume=28&rft.issue=4&rft.spage=433&rft.epage=474&rft.pages=433-474&rft.issn=0737-0008&rft.eissn=1532-690X&rft_id=info:doi/10.1080/07370008.2010.511569&rft_dat=%3Cjstor_eric_%3E20787134%3C/jstor_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758866177&rft_id=info:pmid/&rft_ericid=EJ901372&rft_jstor_id=20787134&rfr_iscdi=true