Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics
This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutor...
Gespeichert in:
Veröffentlicht in: | Cognition and instruction 2010-01, Vol.28 (4), p.433-474 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 4 |
container_start_page | 433 |
container_title | Cognition and instruction |
container_volume | 28 |
creator | Saxe, Geoffrey B. Earnest, Darrell Sitabkhan, Yasmin Haldar, Lina C. Lewis, Katherine E. Zheng, Ying |
description | This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories. |
doi_str_mv | 10.1080/07370008.2010.511569 |
format | Article |
fullrecord | <record><control><sourceid>jstor_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ901372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ901372</ericid><jstor_id>20787134</jstor_id><sourcerecordid>20787134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</originalsourceid><addsrcrecordid>eNp9kM1O3DAUhS1EJQbKG4AUdR9qJ7Gvs0IIDT_V0C4KiJ3lODZ4mNhT26Hi7XEUYMnqWvd85_jqIHRE8AnBHP_EUAPGmJ9UOK8oIZS1O2hBaF2VrMUPu2gxIeXE7KH9GNf5VVECC3T_d9xufUjWPRaX2ukgk33Rxe2Tdc_T7qzzYyrSky6uXdKPOhS_x6HLY2WdLqwrlhs9aJdkeC1uZOaGHKDid_TNyE3Uh-_zAN1dLG_Pr8rVn8vr87NVqWqAVPatAa0op51s2q4BUvUEgPWMdcyYToLsOVHQM2iNkZQarhQ2UjbAeKWVqQ_Qjzl3G_y_Ucck1n4MLn8pgHLOWI7LUDNDKvgYgzZiG-yQLxYEi6lA8VGgmAoUc4HZdjTbdLDq07L81WJSQ5Xl41lex-TDp15h4EDqJuuns26d8WGQ_33Y9CLJ140PJkinbBT1lwe8AWoYiwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758866177</pqid></control><display><type>article</type><title>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Saxe, Geoffrey B. ; Earnest, Darrell ; Sitabkhan, Yasmin ; Haldar, Lina C. ; Lewis, Katherine E. ; Zheng, Ying</creator><creatorcontrib>Saxe, Geoffrey B. ; Earnest, Darrell ; Sitabkhan, Yasmin ; Haldar, Lina C. ; Lewis, Katherine E. ; Zheng, Ying</creatorcontrib><description>This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.</description><identifier>ISSN: 0737-0008</identifier><identifier>EISSN: 1532-690X</identifier><identifier>DOI: 10.1080/07370008.2010.511569</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Cognition & reasoning ; Comparative Analysis ; Educational Games ; Elementary School Mathematics ; Elementary school students ; Grade 5 ; Instructional design ; Integers ; Learning ; Mathematical Concepts ; Mathematical intervals ; Mathematics education ; Number Concepts ; Numbers ; Posttests ; Pretests ; Pretests Posttests ; Problem sets ; Quantification ; Teaching Methods ; Tutorials ; Tutoring ; Tutors</subject><ispartof>Cognition and instruction, 2010-01, Vol.28 (4), p.433-474</ispartof><rights>Copyright Taylor & Francis Group, LLC 2010</rights><rights>Copyright © 2010 Taylor & Francis Group, LLC.</rights><rights>Copyright Routledge Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</citedby><cites>FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20787134$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20787134$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ901372$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Saxe, Geoffrey B.</creatorcontrib><creatorcontrib>Earnest, Darrell</creatorcontrib><creatorcontrib>Sitabkhan, Yasmin</creatorcontrib><creatorcontrib>Haldar, Lina C.</creatorcontrib><creatorcontrib>Lewis, Katherine E.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><title>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</title><title>Cognition and instruction</title><description>This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.</description><subject>Cognition & reasoning</subject><subject>Comparative Analysis</subject><subject>Educational Games</subject><subject>Elementary School Mathematics</subject><subject>Elementary school students</subject><subject>Grade 5</subject><subject>Instructional design</subject><subject>Integers</subject><subject>Learning</subject><subject>Mathematical Concepts</subject><subject>Mathematical intervals</subject><subject>Mathematics education</subject><subject>Number Concepts</subject><subject>Numbers</subject><subject>Posttests</subject><subject>Pretests</subject><subject>Pretests Posttests</subject><subject>Problem sets</subject><subject>Quantification</subject><subject>Teaching Methods</subject><subject>Tutorials</subject><subject>Tutoring</subject><subject>Tutors</subject><issn>0737-0008</issn><issn>1532-690X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAUhS1EJQbKG4AUdR9qJ7Gvs0IIDT_V0C4KiJ3lODZ4mNhT26Hi7XEUYMnqWvd85_jqIHRE8AnBHP_EUAPGmJ9UOK8oIZS1O2hBaF2VrMUPu2gxIeXE7KH9GNf5VVECC3T_d9xufUjWPRaX2ukgk33Rxe2Tdc_T7qzzYyrSky6uXdKPOhS_x6HLY2WdLqwrlhs9aJdkeC1uZOaGHKDid_TNyE3Uh-_zAN1dLG_Pr8rVn8vr87NVqWqAVPatAa0op51s2q4BUvUEgPWMdcyYToLsOVHQM2iNkZQarhQ2UjbAeKWVqQ_Qjzl3G_y_Ucck1n4MLn8pgHLOWI7LUDNDKvgYgzZiG-yQLxYEi6lA8VGgmAoUc4HZdjTbdLDq07L81WJSQ5Xl41lex-TDp15h4EDqJuuns26d8WGQ_33Y9CLJ140PJkinbBT1lwe8AWoYiwo</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Saxe, Geoffrey B.</creator><creator>Earnest, Darrell</creator><creator>Sitabkhan, Yasmin</creator><creator>Haldar, Lina C.</creator><creator>Lewis, Katherine E.</creator><creator>Zheng, Ying</creator><general>Taylor & Francis Group</general><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</title><author>Saxe, Geoffrey B. ; Earnest, Darrell ; Sitabkhan, Yasmin ; Haldar, Lina C. ; Lewis, Katherine E. ; Zheng, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-d9f7ec585ba49b4712d1776d66b6ffba7ad81c7d679ffa55f8cc0faa47682ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cognition & reasoning</topic><topic>Comparative Analysis</topic><topic>Educational Games</topic><topic>Elementary School Mathematics</topic><topic>Elementary school students</topic><topic>Grade 5</topic><topic>Instructional design</topic><topic>Integers</topic><topic>Learning</topic><topic>Mathematical Concepts</topic><topic>Mathematical intervals</topic><topic>Mathematics education</topic><topic>Number Concepts</topic><topic>Numbers</topic><topic>Posttests</topic><topic>Pretests</topic><topic>Pretests Posttests</topic><topic>Problem sets</topic><topic>Quantification</topic><topic>Teaching Methods</topic><topic>Tutorials</topic><topic>Tutoring</topic><topic>Tutors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saxe, Geoffrey B.</creatorcontrib><creatorcontrib>Earnest, Darrell</creatorcontrib><creatorcontrib>Sitabkhan, Yasmin</creatorcontrib><creatorcontrib>Haldar, Lina C.</creatorcontrib><creatorcontrib>Lewis, Katherine E.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Cognition and instruction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saxe, Geoffrey B.</au><au>Earnest, Darrell</au><au>Sitabkhan, Yasmin</au><au>Haldar, Lina C.</au><au>Lewis, Katherine E.</au><au>Zheng, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ901372</ericid><atitle>Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics</atitle><jtitle>Cognition and instruction</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>28</volume><issue>4</issue><spage>433</spage><epage>474</epage><pages>433-474</pages><issn>0737-0008</issn><eissn>1532-690X</eissn><abstract>This report provides evidence of the influence of a tutorial "communication game" on fifth graders' generative understanding of the integer number line. Students matched for classroom and pretest score were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students played a 13-problem game in which student and tutor each were required to mark the same position on a number line but could not see one another's activities. To resolve discrepant solutions, tutor and student constructed agreements about number line principles and conventions to guide subsequent placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and (b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of student learning trajectories.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/07370008.2010.511569</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-0008 |
ispartof | Cognition and instruction, 2010-01, Vol.28 (4), p.433-474 |
issn | 0737-0008 1532-690X |
language | eng |
recordid | cdi_eric_primary_EJ901372 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Cognition & reasoning Comparative Analysis Educational Games Elementary School Mathematics Elementary school students Grade 5 Instructional design Integers Learning Mathematical Concepts Mathematical intervals Mathematics education Number Concepts Numbers Posttests Pretests Pretests Posttests Problem sets Quantification Teaching Methods Tutorials Tutoring Tutors |
title | Supporting Generative Thinking About the Integer Number Line in Elementary Mathematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supporting%20Generative%20Thinking%20About%20the%20Integer%20Number%20Line%20in%20Elementary%20Mathematics&rft.jtitle=Cognition%20and%20instruction&rft.au=Saxe,%20Geoffrey%20B.&rft.date=2010-01-01&rft.volume=28&rft.issue=4&rft.spage=433&rft.epage=474&rft.pages=433-474&rft.issn=0737-0008&rft.eissn=1532-690X&rft_id=info:doi/10.1080/07370008.2010.511569&rft_dat=%3Cjstor_eric_%3E20787134%3C/jstor_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758866177&rft_id=info:pmid/&rft_ericid=EJ901372&rft_jstor_id=20787134&rfr_iscdi=true |