Renormalizing the kinetic energy operator in elementary quantum mechanics
In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an...
Gespeichert in:
Veröffentlicht in: | European journal of physics 2009-09, Vol.30 (5), p.1015-1023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 5 |
container_start_page | 1015 |
container_title | European journal of physics |
container_volume | 30 |
creator | Coutinho, F A B Amaku, M |
description | In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness. |
doi_str_mv | 10.1088/0143-0807/30/5/010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ851823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ851823</ericid><sourcerecordid>743421457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_QDzsRcTD2skm6WaPIlUrBUH0HNLsbBvdzW6T7aH-elNaeil4mWF438w8HiHXFB4oSDkCylkKEvIRg5GII5yQAWVjmo458FMyOADn5CKEbwBKJeUDMv1A1_pG1_bXukXSLzH5sQ57axJ06BebpO3Q6771iXUJ1tig67XfJKu1dv26SRo0S-2sCZfkrNJ1wKt9H5Kv58nn02s6e3-ZPj3OUsMh62OVTBZC67I0mSgqwURZlVTIOTfjXGuj8wxgzoAxZBlURSWL2DgvpBBzLdiQ3O3udr5drTH0qrHBYF1rh-06qJwznlEu8khmO9L4NgSPleq8baJ5RUFtY1PbVNQ2FcVAiThCXLrdn9fB6Lry2hkbDpsZLXi0VUTuZseht-YgT96koDJjUb7fybbtDurxO9WVVWTTY_Yfi3_f55Bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743421457</pqid></control><display><type>article</type><title>Renormalizing the kinetic energy operator in elementary quantum mechanics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Coutinho, F A B ; Amaku, M</creator><creatorcontrib>Coutinho, F A B ; Amaku, M</creatorcontrib><description>In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/0143-0807/30/5/010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>College Science ; Communication, education, history, and philosophy ; Energy ; Equations (Mathematics) ; Exact sciences and technology ; General physics ; Kinetics ; Physics ; Physics literature and publications ; Problem Solving ; Quantum Mechanics ; Science Instruction ; Scientific Principles ; Surveys and tutorial papers, resource letters</subject><ispartof>European journal of physics, 2009-09, Vol.30 (5), p.1015-1023</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</citedby><cites>FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0143-0807/30/5/010/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ851823$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21943209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coutinho, F A B</creatorcontrib><creatorcontrib>Amaku, M</creatorcontrib><title>Renormalizing the kinetic energy operator in elementary quantum mechanics</title><title>European journal of physics</title><description>In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.</description><subject>College Science</subject><subject>Communication, education, history, and philosophy</subject><subject>Energy</subject><subject>Equations (Mathematics)</subject><subject>Exact sciences and technology</subject><subject>General physics</subject><subject>Kinetics</subject><subject>Physics</subject><subject>Physics literature and publications</subject><subject>Problem Solving</subject><subject>Quantum Mechanics</subject><subject>Science Instruction</subject><subject>Scientific Principles</subject><subject>Surveys and tutorial papers, resource letters</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_QDzsRcTD2skm6WaPIlUrBUH0HNLsbBvdzW6T7aH-elNaeil4mWF438w8HiHXFB4oSDkCylkKEvIRg5GII5yQAWVjmo458FMyOADn5CKEbwBKJeUDMv1A1_pG1_bXukXSLzH5sQ57axJ06BebpO3Q6771iXUJ1tig67XfJKu1dv26SRo0S-2sCZfkrNJ1wKt9H5Kv58nn02s6e3-ZPj3OUsMh62OVTBZC67I0mSgqwURZlVTIOTfjXGuj8wxgzoAxZBlURSWL2DgvpBBzLdiQ3O3udr5drTH0qrHBYF1rh-06qJwznlEu8khmO9L4NgSPleq8baJ5RUFtY1PbVNQ2FcVAiThCXLrdn9fB6Lry2hkbDpsZLXi0VUTuZseht-YgT96koDJjUb7fybbtDurxO9WVVWTTY_Yfi3_f55Bi</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Coutinho, F A B</creator><creator>Amaku, M</creator><general>IOP Publishing</general><general>Institute of Physics Publishing</general><general>Institute of Physics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090901</creationdate><title>Renormalizing the kinetic energy operator in elementary quantum mechanics</title><author>Coutinho, F A B ; Amaku, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>College Science</topic><topic>Communication, education, history, and philosophy</topic><topic>Energy</topic><topic>Equations (Mathematics)</topic><topic>Exact sciences and technology</topic><topic>General physics</topic><topic>Kinetics</topic><topic>Physics</topic><topic>Physics literature and publications</topic><topic>Problem Solving</topic><topic>Quantum Mechanics</topic><topic>Science Instruction</topic><topic>Scientific Principles</topic><topic>Surveys and tutorial papers, resource letters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutinho, F A B</creatorcontrib><creatorcontrib>Amaku, M</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutinho, F A B</au><au>Amaku, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ851823</ericid><atitle>Renormalizing the kinetic energy operator in elementary quantum mechanics</atitle><jtitle>European journal of physics</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>30</volume><issue>5</issue><spage>1015</spage><epage>1023</epage><pages>1015-1023</pages><issn>0143-0807</issn><eissn>1361-6404</eissn><abstract>In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0143-0807/30/5/010</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-0807 |
ispartof | European journal of physics, 2009-09, Vol.30 (5), p.1015-1023 |
issn | 0143-0807 1361-6404 |
language | eng |
recordid | cdi_eric_primary_EJ851823 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | College Science Communication, education, history, and philosophy Energy Equations (Mathematics) Exact sciences and technology General physics Kinetics Physics Physics literature and publications Problem Solving Quantum Mechanics Science Instruction Scientific Principles Surveys and tutorial papers, resource letters |
title | Renormalizing the kinetic energy operator in elementary quantum mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalizing%20the%20kinetic%20energy%20operator%20in%20elementary%20quantum%20mechanics&rft.jtitle=European%20journal%20of%20physics&rft.au=Coutinho,%20F%20A%20B&rft.date=2009-09-01&rft.volume=30&rft.issue=5&rft.spage=1015&rft.epage=1023&rft.pages=1015-1023&rft.issn=0143-0807&rft.eissn=1361-6404&rft_id=info:doi/10.1088/0143-0807/30/5/010&rft_dat=%3Cproquest_eric_%3E743421457%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743421457&rft_id=info:pmid/&rft_ericid=EJ851823&rfr_iscdi=true |