Renormalizing the kinetic energy operator in elementary quantum mechanics

In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2009-09, Vol.30 (5), p.1015-1023
Hauptverfasser: Coutinho, F A B, Amaku, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 5
container_start_page 1015
container_title European journal of physics
container_volume 30
creator Coutinho, F A B
Amaku, M
description In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
doi_str_mv 10.1088/0143-0807/30/5/010
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ851823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ851823</ericid><sourcerecordid>743421457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_QDzsRcTD2skm6WaPIlUrBUH0HNLsbBvdzW6T7aH-elNaeil4mWF438w8HiHXFB4oSDkCylkKEvIRg5GII5yQAWVjmo458FMyOADn5CKEbwBKJeUDMv1A1_pG1_bXukXSLzH5sQ57axJ06BebpO3Q6771iXUJ1tig67XfJKu1dv26SRo0S-2sCZfkrNJ1wKt9H5Kv58nn02s6e3-ZPj3OUsMh62OVTBZC67I0mSgqwURZlVTIOTfjXGuj8wxgzoAxZBlURSWL2DgvpBBzLdiQ3O3udr5drTH0qrHBYF1rh-06qJwznlEu8khmO9L4NgSPleq8baJ5RUFtY1PbVNQ2FcVAiThCXLrdn9fB6Lry2hkbDpsZLXi0VUTuZseht-YgT96koDJjUb7fybbtDurxO9WVVWTTY_Yfi3_f55Bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743421457</pqid></control><display><type>article</type><title>Renormalizing the kinetic energy operator in elementary quantum mechanics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Coutinho, F A B ; Amaku, M</creator><creatorcontrib>Coutinho, F A B ; Amaku, M</creatorcontrib><description>In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/0143-0807/30/5/010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>College Science ; Communication, education, history, and philosophy ; Energy ; Equations (Mathematics) ; Exact sciences and technology ; General physics ; Kinetics ; Physics ; Physics literature and publications ; Problem Solving ; Quantum Mechanics ; Science Instruction ; Scientific Principles ; Surveys and tutorial papers, resource letters</subject><ispartof>European journal of physics, 2009-09, Vol.30 (5), p.1015-1023</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</citedby><cites>FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0143-0807/30/5/010/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ851823$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21943209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coutinho, F A B</creatorcontrib><creatorcontrib>Amaku, M</creatorcontrib><title>Renormalizing the kinetic energy operator in elementary quantum mechanics</title><title>European journal of physics</title><description>In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.</description><subject>College Science</subject><subject>Communication, education, history, and philosophy</subject><subject>Energy</subject><subject>Equations (Mathematics)</subject><subject>Exact sciences and technology</subject><subject>General physics</subject><subject>Kinetics</subject><subject>Physics</subject><subject>Physics literature and publications</subject><subject>Problem Solving</subject><subject>Quantum Mechanics</subject><subject>Science Instruction</subject><subject>Scientific Principles</subject><subject>Surveys and tutorial papers, resource letters</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_QDzsRcTD2skm6WaPIlUrBUH0HNLsbBvdzW6T7aH-elNaeil4mWF438w8HiHXFB4oSDkCylkKEvIRg5GII5yQAWVjmo458FMyOADn5CKEbwBKJeUDMv1A1_pG1_bXukXSLzH5sQ57axJ06BebpO3Q6771iXUJ1tig67XfJKu1dv26SRo0S-2sCZfkrNJ1wKt9H5Kv58nn02s6e3-ZPj3OUsMh62OVTBZC67I0mSgqwURZlVTIOTfjXGuj8wxgzoAxZBlURSWL2DgvpBBzLdiQ3O3udr5drTH0qrHBYF1rh-06qJwznlEu8khmO9L4NgSPleq8baJ5RUFtY1PbVNQ2FcVAiThCXLrdn9fB6Lry2hkbDpsZLXi0VUTuZseht-YgT96koDJjUb7fybbtDurxO9WVVWTTY_Yfi3_f55Bi</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Coutinho, F A B</creator><creator>Amaku, M</creator><general>IOP Publishing</general><general>Institute of Physics Publishing</general><general>Institute of Physics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090901</creationdate><title>Renormalizing the kinetic energy operator in elementary quantum mechanics</title><author>Coutinho, F A B ; Amaku, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c483895aaddc259f535dfd158b4c67aaca7200b3033e320f9f8920f449855ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>College Science</topic><topic>Communication, education, history, and philosophy</topic><topic>Energy</topic><topic>Equations (Mathematics)</topic><topic>Exact sciences and technology</topic><topic>General physics</topic><topic>Kinetics</topic><topic>Physics</topic><topic>Physics literature and publications</topic><topic>Problem Solving</topic><topic>Quantum Mechanics</topic><topic>Science Instruction</topic><topic>Scientific Principles</topic><topic>Surveys and tutorial papers, resource letters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutinho, F A B</creatorcontrib><creatorcontrib>Amaku, M</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutinho, F A B</au><au>Amaku, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ851823</ericid><atitle>Renormalizing the kinetic energy operator in elementary quantum mechanics</atitle><jtitle>European journal of physics</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>30</volume><issue>5</issue><spage>1015</spage><epage>1023</epage><pages>1015-1023</pages><issn>0143-0807</issn><eissn>1361-6404</eissn><abstract>In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0143-0807/30/5/010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-0807
ispartof European journal of physics, 2009-09, Vol.30 (5), p.1015-1023
issn 0143-0807
1361-6404
language eng
recordid cdi_eric_primary_EJ851823
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects College Science
Communication, education, history, and philosophy
Energy
Equations (Mathematics)
Exact sciences and technology
General physics
Kinetics
Physics
Physics literature and publications
Problem Solving
Quantum Mechanics
Science Instruction
Scientific Principles
Surveys and tutorial papers, resource letters
title Renormalizing the kinetic energy operator in elementary quantum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalizing%20the%20kinetic%20energy%20operator%20in%20elementary%20quantum%20mechanics&rft.jtitle=European%20journal%20of%20physics&rft.au=Coutinho,%20F%20A%20B&rft.date=2009-09-01&rft.volume=30&rft.issue=5&rft.spage=1015&rft.epage=1023&rft.pages=1015-1023&rft.issn=0143-0807&rft.eissn=1361-6404&rft_id=info:doi/10.1088/0143-0807/30/5/010&rft_dat=%3Cproquest_eric_%3E743421457%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743421457&rft_id=info:pmid/&rft_ericid=EJ851823&rfr_iscdi=true