On the Likelihood Ratio Test in Structural Equation Modeling when Parameters are Subject to Boundary Constraints

The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2006-12, Vol.1 (4), p.439
Hauptverfasser: Stoel, Reinoud D, Garre, Francisca Galindo, Dolan, Conor, van den Wittenboer, Godfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 439
container_title Psychological methods
container_volume 1
creator Stoel, Reinoud D
Garre, Francisca Galindo
Dolan, Conor
van den Wittenboer, Godfried
description The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the autoregressive model, and the latent growth curve model, although this is not commonly acknowledged. Such constraints are the result of the null hypothesis in which the parameter value or values are placed on the boundary of the parameter space. For instance, this occurs in testing whether the variance of a growth parameter is significantly different from 0. It is shown that in these cases, the asymptotic distribution of the chi-square difference cannot be treated as that of a central chi-square-distributed random variable with degrees of freedom equal to the number of constraints. The correct distribution for testing 1 or a few parameters at a time is inferred for the 3 structural equation models mentioned above. Subsequently, the authors describe and illustrate the steps that one should take to obtain this distribution. An important message is that using the correct distribution may lead to appreciably greater statistical power.
format Article
fullrecord <record><control><sourceid>eric</sourceid><recordid>TN_cdi_eric_primary_EJ751128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ751128</ericid><sourcerecordid>EJ751128</sourcerecordid><originalsourceid>FETCH-eric_primary_EJ7511283</originalsourceid><addsrcrecordid>eNqFi8sOwUAUQGdBoh5_YHF_QNIWUVtNRYQQtbCT0V461c5w507E36vE3uoszjkt4QV-FI7m0fzUEV1rS98PJuNo4onHTgMXCBt1x0oVxuRwkKwMHNEyKA0pk8vYkawgebqv0rA1eRPrG7wK1LCXJGtkJAuSEFJ3KTFjYAML43Qu6Q2x0ZZJKs22L9pXWVkc_NgTw2VyjFcjJJWdH6TqZjgn69k0CMJo_Ed_AD9oRU0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Likelihood Ratio Test in Structural Equation Modeling when Parameters are Subject to Boundary Constraints</title><source>EBSCOhost APA PsycARTICLES</source><creator>Stoel, Reinoud D ; Garre, Francisca Galindo ; Dolan, Conor ; van den Wittenboer, Godfried</creator><creatorcontrib>Stoel, Reinoud D ; Garre, Francisca Galindo ; Dolan, Conor ; van den Wittenboer, Godfried</creatorcontrib><description>The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the autoregressive model, and the latent growth curve model, although this is not commonly acknowledged. Such constraints are the result of the null hypothesis in which the parameter value or values are placed on the boundary of the parameter space. For instance, this occurs in testing whether the variance of a growth parameter is significantly different from 0. It is shown that in these cases, the asymptotic distribution of the chi-square difference cannot be treated as that of a central chi-square-distributed random variable with degrees of freedom equal to the number of constraints. The correct distribution for testing 1 or a few parameters at a time is inferred for the 3 structural equation models mentioned above. Subsequently, the authors describe and illustrate the steps that one should take to obtain this distribution. An important message is that using the correct distribution may lead to appreciably greater statistical power.</description><identifier>ISSN: 1082-989X</identifier><language>eng</language><publisher>American Psychological Association</publisher><subject>Evaluation Methods ; Null Hypothesis ; Structural Equation Models ; Testing</subject><ispartof>Psychological methods, 2006-12, Vol.1 (4), p.439</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ751128$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoel, Reinoud D</creatorcontrib><creatorcontrib>Garre, Francisca Galindo</creatorcontrib><creatorcontrib>Dolan, Conor</creatorcontrib><creatorcontrib>van den Wittenboer, Godfried</creatorcontrib><title>On the Likelihood Ratio Test in Structural Equation Modeling when Parameters are Subject to Boundary Constraints</title><title>Psychological methods</title><description>The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the autoregressive model, and the latent growth curve model, although this is not commonly acknowledged. Such constraints are the result of the null hypothesis in which the parameter value or values are placed on the boundary of the parameter space. For instance, this occurs in testing whether the variance of a growth parameter is significantly different from 0. It is shown that in these cases, the asymptotic distribution of the chi-square difference cannot be treated as that of a central chi-square-distributed random variable with degrees of freedom equal to the number of constraints. The correct distribution for testing 1 or a few parameters at a time is inferred for the 3 structural equation models mentioned above. Subsequently, the authors describe and illustrate the steps that one should take to obtain this distribution. An important message is that using the correct distribution may lead to appreciably greater statistical power.</description><subject>Evaluation Methods</subject><subject>Null Hypothesis</subject><subject>Structural Equation Models</subject><subject>Testing</subject><issn>1082-989X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFi8sOwUAUQGdBoh5_YHF_QNIWUVtNRYQQtbCT0V461c5w507E36vE3uoszjkt4QV-FI7m0fzUEV1rS98PJuNo4onHTgMXCBt1x0oVxuRwkKwMHNEyKA0pk8vYkawgebqv0rA1eRPrG7wK1LCXJGtkJAuSEFJ3KTFjYAML43Qu6Q2x0ZZJKs22L9pXWVkc_NgTw2VyjFcjJJWdH6TqZjgn69k0CMJo_Ed_AD9oRU0</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Stoel, Reinoud D</creator><creator>Garre, Francisca Galindo</creator><creator>Dolan, Conor</creator><creator>van den Wittenboer, Godfried</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope></search><sort><creationdate>200612</creationdate><title>On the Likelihood Ratio Test in Structural Equation Modeling when Parameters are Subject to Boundary Constraints</title><author>Stoel, Reinoud D ; Garre, Francisca Galindo ; Dolan, Conor ; van den Wittenboer, Godfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-eric_primary_EJ7511283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Evaluation Methods</topic><topic>Null Hypothesis</topic><topic>Structural Equation Models</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoel, Reinoud D</creatorcontrib><creatorcontrib>Garre, Francisca Galindo</creatorcontrib><creatorcontrib>Dolan, Conor</creatorcontrib><creatorcontrib>van den Wittenboer, Godfried</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoel, Reinoud D</au><au>Garre, Francisca Galindo</au><au>Dolan, Conor</au><au>van den Wittenboer, Godfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ751128</ericid><atitle>On the Likelihood Ratio Test in Structural Equation Modeling when Parameters are Subject to Boundary Constraints</atitle><jtitle>Psychological methods</jtitle><date>2006-12</date><risdate>2006</risdate><volume>1</volume><issue>4</issue><spage>439</spage><pages>439-</pages><issn>1082-989X</issn><abstract>The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the autoregressive model, and the latent growth curve model, although this is not commonly acknowledged. Such constraints are the result of the null hypothesis in which the parameter value or values are placed on the boundary of the parameter space. For instance, this occurs in testing whether the variance of a growth parameter is significantly different from 0. It is shown that in these cases, the asymptotic distribution of the chi-square difference cannot be treated as that of a central chi-square-distributed random variable with degrees of freedom equal to the number of constraints. The correct distribution for testing 1 or a few parameters at a time is inferred for the 3 structural equation models mentioned above. Subsequently, the authors describe and illustrate the steps that one should take to obtain this distribution. An important message is that using the correct distribution may lead to appreciably greater statistical power.</abstract><pub>American Psychological Association</pub><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1082-989X
ispartof Psychological methods, 2006-12, Vol.1 (4), p.439
issn 1082-989X
language eng
recordid cdi_eric_primary_EJ751128
source EBSCOhost APA PsycARTICLES
subjects Evaluation Methods
Null Hypothesis
Structural Equation Models
Testing
title On the Likelihood Ratio Test in Structural Equation Modeling when Parameters are Subject to Boundary Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Likelihood%20Ratio%20Test%20in%20Structural%20Equation%20Modeling%20when%20Parameters%20are%20Subject%20to%20Boundary%20Constraints&rft.jtitle=Psychological%20methods&rft.au=Stoel,%20Reinoud%20D&rft.date=2006-12&rft.volume=1&rft.issue=4&rft.spage=439&rft.pages=439-&rft.issn=1082-989X&rft_id=info:doi/&rft_dat=%3Ceric%3EEJ751128%3C/eric%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ751128&rfr_iscdi=true