Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method
In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to bu...
Gespeichert in:
Veröffentlicht in: | International journal of information and communication technology education 2023-01, Vol.19 (1), p.1-19 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of information and communication technology education |
container_volume | 19 |
creator | Shou, Zhaoyu Tang, Mengxue Wen, Hui Liu, Jinghua Mo, Jianwen Zhang, Huibing |
description | In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation. |
doi_str_mv | 10.4018/IJICTE.322773 |
format | Article |
fullrecord | <record><control><sourceid>gale_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1393526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759564351</galeid><ericid>EJ1393526</ericid><sourcerecordid>A759564351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</originalsourceid><addsrcrecordid>eNptUUtvGyEYXFWJlFePOVZCynldHsuyHN2tk26al2pHPSKWBZvUhgSwovz7kmwel4gDI5j5vtFMURwjOKkgar535127mE0IxoyRL8U-ohSWiBC284YbVu8VBzHeQUgowWy_GH7rJzBP20G7BK78oCO4tM66JbAOpJUGnSvbtYwRzL2ycg2udHr04R_4IaMegHeg9Zveuoz_artcpQzO_kzLxfXNvJuDS51Wfjgqdo1cR_319T4sbk9ni_ZXeXF91rXTi1JVuE4lMoYyRXBPTVVBhTnuUc0Y7vnAG0kZrlTd9worzg3hRive1BKxATWEV5AjclicjHPvg3_Y6pjEnd8Gl1cK3CBCEaR1nVmTkbWUay2sMz4FqfIZ9MYq77Sx-X3KKKd1lUVZUI4CFXyMQRtxH-xGhieBoHhOXozJizH5zP828nWw6p07O0eEE4qfDfwc_-3Sfjh8LUG8lCDGErI7kT5dgjj5D27zk_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813510566</pqid></control><display><type>article</type><title>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</title><source>Alma/SFX Local Collection</source><creator>Shou, Zhaoyu ; Tang, Mengxue ; Wen, Hui ; Liu, Jinghua ; Mo, Jianwen ; Zhang, Huibing</creator><creatorcontrib>Shou, Zhaoyu ; Tang, Mengxue ; Wen, Hui ; Liu, Jinghua ; Mo, Jianwen ; Zhang, Huibing</creatorcontrib><description>In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.</description><identifier>ISSN: 1550-1876</identifier><identifier>EISSN: 1550-1337</identifier><identifier>DOI: 10.4018/IJICTE.322773</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Analysis ; Classroom Environment ; Computation ; Data Analysis ; Decision Making ; Educational evaluation ; Entropy (statistics) ; Evaluation Methods ; Methods ; Mineral industry ; Mining industry ; Multidimensional data ; Network Analysis ; Nodes ; Social Networks ; Student Evaluation ; Students ; Technical services ; Technical Support ; Weighting methods</subject><ispartof>International journal of information and communication technology education, 2023-01, Vol.19 (1), p.1-19</ispartof><rights>COPYRIGHT 2023 IGI Global</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</citedby><cites>FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</cites><orcidid>0000-0003-2429-5782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1393526$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Shou, Zhaoyu</creatorcontrib><creatorcontrib>Tang, Mengxue</creatorcontrib><creatorcontrib>Wen, Hui</creatorcontrib><creatorcontrib>Liu, Jinghua</creatorcontrib><creatorcontrib>Mo, Jianwen</creatorcontrib><creatorcontrib>Zhang, Huibing</creatorcontrib><title>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</title><title>International journal of information and communication technology education</title><description>In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classroom Environment</subject><subject>Computation</subject><subject>Data Analysis</subject><subject>Decision Making</subject><subject>Educational evaluation</subject><subject>Entropy (statistics)</subject><subject>Evaluation Methods</subject><subject>Methods</subject><subject>Mineral industry</subject><subject>Mining industry</subject><subject>Multidimensional data</subject><subject>Network Analysis</subject><subject>Nodes</subject><subject>Social Networks</subject><subject>Student Evaluation</subject><subject>Students</subject><subject>Technical services</subject><subject>Technical Support</subject><subject>Weighting methods</subject><issn>1550-1876</issn><issn>1550-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUUtvGyEYXFWJlFePOVZCynldHsuyHN2tk26al2pHPSKWBZvUhgSwovz7kmwel4gDI5j5vtFMURwjOKkgar535127mE0IxoyRL8U-ohSWiBC284YbVu8VBzHeQUgowWy_GH7rJzBP20G7BK78oCO4tM66JbAOpJUGnSvbtYwRzL2ycg2udHr04R_4IaMegHeg9Zveuoz_artcpQzO_kzLxfXNvJuDS51Wfjgqdo1cR_319T4sbk9ni_ZXeXF91rXTi1JVuE4lMoYyRXBPTVVBhTnuUc0Y7vnAG0kZrlTd9worzg3hRive1BKxATWEV5AjclicjHPvg3_Y6pjEnd8Gl1cK3CBCEaR1nVmTkbWUay2sMz4FqfIZ9MYq77Sx-X3KKKd1lUVZUI4CFXyMQRtxH-xGhieBoHhOXozJizH5zP828nWw6p07O0eEE4qfDfwc_-3Sfjh8LUG8lCDGErI7kT5dgjj5D27zk_s</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shou, Zhaoyu</creator><creator>Tang, Mengxue</creator><creator>Wen, Hui</creator><creator>Liu, Jinghua</creator><creator>Mo, Jianwen</creator><creator>Zhang, Huibing</creator><general>IGI Global</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88B</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0P</scope><scope>M1O</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2429-5782</orcidid></search><sort><creationdate>20230101</creationdate><title>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</title><author>Shou, Zhaoyu ; Tang, Mengxue ; Wen, Hui ; Liu, Jinghua ; Mo, Jianwen ; Zhang, Huibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classroom Environment</topic><topic>Computation</topic><topic>Data Analysis</topic><topic>Decision Making</topic><topic>Educational evaluation</topic><topic>Entropy (statistics)</topic><topic>Evaluation Methods</topic><topic>Methods</topic><topic>Mineral industry</topic><topic>Mining industry</topic><topic>Multidimensional data</topic><topic>Network Analysis</topic><topic>Nodes</topic><topic>Social Networks</topic><topic>Student Evaluation</topic><topic>Students</topic><topic>Technical services</topic><topic>Technical Support</topic><topic>Weighting methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shou, Zhaoyu</creatorcontrib><creatorcontrib>Tang, Mengxue</creatorcontrib><creatorcontrib>Wen, Hui</creatorcontrib><creatorcontrib>Liu, Jinghua</creatorcontrib><creatorcontrib>Mo, Jianwen</creatorcontrib><creatorcontrib>Zhang, Huibing</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Education Database</collection><collection>Library Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of information and communication technology education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shou, Zhaoyu</au><au>Tang, Mengxue</au><au>Wen, Hui</au><au>Liu, Jinghua</au><au>Mo, Jianwen</au><au>Zhang, Huibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1393526</ericid><atitle>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</atitle><jtitle>International journal of information and communication technology education</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1550-1876</issn><eissn>1550-1337</eissn><abstract>In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJICTE.322773</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2429-5782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-1876 |
ispartof | International journal of information and communication technology education, 2023-01, Vol.19 (1), p.1-19 |
issn | 1550-1876 1550-1337 |
language | eng |
recordid | cdi_eric_primary_EJ1393526 |
source | Alma/SFX Local Collection |
subjects | Algorithms Analysis Classroom Environment Computation Data Analysis Decision Making Educational evaluation Entropy (statistics) Evaluation Methods Methods Mineral industry Mining industry Multidimensional data Network Analysis Nodes Social Networks Student Evaluation Students Technical services Technical Support Weighting methods |
title | Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Key%20Student%20Nodes%20Mining%20in%20the%20In-Class%20Social%20Network%20Based%20on%20Combined%20Weighted%20GRA-TOPSIS%20Method&rft.jtitle=International%20journal%20of%20information%20and%20communication%20technology%20education&rft.au=Shou,%20Zhaoyu&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1550-1876&rft.eissn=1550-1337&rft_id=info:doi/10.4018/IJICTE.322773&rft_dat=%3Cgale_eric_%3EA759564351%3C/gale_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813510566&rft_id=info:pmid/&rft_galeid=A759564351&rft_ericid=EJ1393526&rfr_iscdi=true |