Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method

In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information and communication technology education 2023-01, Vol.19 (1), p.1-19
Hauptverfasser: Shou, Zhaoyu, Tang, Mengxue, Wen, Hui, Liu, Jinghua, Mo, Jianwen, Zhang, Huibing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1
container_title International journal of information and communication technology education
container_volume 19
creator Shou, Zhaoyu
Tang, Mengxue
Wen, Hui
Liu, Jinghua
Mo, Jianwen
Zhang, Huibing
description In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.
doi_str_mv 10.4018/IJICTE.322773
format Article
fullrecord <record><control><sourceid>gale_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1393526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759564351</galeid><ericid>EJ1393526</ericid><sourcerecordid>A759564351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</originalsourceid><addsrcrecordid>eNptUUtvGyEYXFWJlFePOVZCynldHsuyHN2tk26al2pHPSKWBZvUhgSwovz7kmwel4gDI5j5vtFMURwjOKkgar535127mE0IxoyRL8U-ohSWiBC284YbVu8VBzHeQUgowWy_GH7rJzBP20G7BK78oCO4tM66JbAOpJUGnSvbtYwRzL2ycg2udHr04R_4IaMegHeg9Zveuoz_artcpQzO_kzLxfXNvJuDS51Wfjgqdo1cR_319T4sbk9ni_ZXeXF91rXTi1JVuE4lMoYyRXBPTVVBhTnuUc0Y7vnAG0kZrlTd9worzg3hRive1BKxATWEV5AjclicjHPvg3_Y6pjEnd8Gl1cK3CBCEaR1nVmTkbWUay2sMz4FqfIZ9MYq77Sx-X3KKKd1lUVZUI4CFXyMQRtxH-xGhieBoHhOXozJizH5zP828nWw6p07O0eEE4qfDfwc_-3Sfjh8LUG8lCDGErI7kT5dgjj5D27zk_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813510566</pqid></control><display><type>article</type><title>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</title><source>Alma/SFX Local Collection</source><creator>Shou, Zhaoyu ; Tang, Mengxue ; Wen, Hui ; Liu, Jinghua ; Mo, Jianwen ; Zhang, Huibing</creator><creatorcontrib>Shou, Zhaoyu ; Tang, Mengxue ; Wen, Hui ; Liu, Jinghua ; Mo, Jianwen ; Zhang, Huibing</creatorcontrib><description>In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.</description><identifier>ISSN: 1550-1876</identifier><identifier>EISSN: 1550-1337</identifier><identifier>DOI: 10.4018/IJICTE.322773</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Analysis ; Classroom Environment ; Computation ; Data Analysis ; Decision Making ; Educational evaluation ; Entropy (statistics) ; Evaluation Methods ; Methods ; Mineral industry ; Mining industry ; Multidimensional data ; Network Analysis ; Nodes ; Social Networks ; Student Evaluation ; Students ; Technical services ; Technical Support ; Weighting methods</subject><ispartof>International journal of information and communication technology education, 2023-01, Vol.19 (1), p.1-19</ispartof><rights>COPYRIGHT 2023 IGI Global</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</citedby><cites>FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</cites><orcidid>0000-0003-2429-5782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1393526$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Shou, Zhaoyu</creatorcontrib><creatorcontrib>Tang, Mengxue</creatorcontrib><creatorcontrib>Wen, Hui</creatorcontrib><creatorcontrib>Liu, Jinghua</creatorcontrib><creatorcontrib>Mo, Jianwen</creatorcontrib><creatorcontrib>Zhang, Huibing</creatorcontrib><title>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</title><title>International journal of information and communication technology education</title><description>In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classroom Environment</subject><subject>Computation</subject><subject>Data Analysis</subject><subject>Decision Making</subject><subject>Educational evaluation</subject><subject>Entropy (statistics)</subject><subject>Evaluation Methods</subject><subject>Methods</subject><subject>Mineral industry</subject><subject>Mining industry</subject><subject>Multidimensional data</subject><subject>Network Analysis</subject><subject>Nodes</subject><subject>Social Networks</subject><subject>Student Evaluation</subject><subject>Students</subject><subject>Technical services</subject><subject>Technical Support</subject><subject>Weighting methods</subject><issn>1550-1876</issn><issn>1550-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUUtvGyEYXFWJlFePOVZCynldHsuyHN2tk26al2pHPSKWBZvUhgSwovz7kmwel4gDI5j5vtFMURwjOKkgar535127mE0IxoyRL8U-ohSWiBC284YbVu8VBzHeQUgowWy_GH7rJzBP20G7BK78oCO4tM66JbAOpJUGnSvbtYwRzL2ycg2udHr04R_4IaMegHeg9Zveuoz_artcpQzO_kzLxfXNvJuDS51Wfjgqdo1cR_319T4sbk9ni_ZXeXF91rXTi1JVuE4lMoYyRXBPTVVBhTnuUc0Y7vnAG0kZrlTd9worzg3hRive1BKxATWEV5AjclicjHPvg3_Y6pjEnd8Gl1cK3CBCEaR1nVmTkbWUay2sMz4FqfIZ9MYq77Sx-X3KKKd1lUVZUI4CFXyMQRtxH-xGhieBoHhOXozJizH5zP828nWw6p07O0eEE4qfDfwc_-3Sfjh8LUG8lCDGErI7kT5dgjj5D27zk_s</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shou, Zhaoyu</creator><creator>Tang, Mengxue</creator><creator>Wen, Hui</creator><creator>Liu, Jinghua</creator><creator>Mo, Jianwen</creator><creator>Zhang, Huibing</creator><general>IGI Global</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88B</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0P</scope><scope>M1O</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2429-5782</orcidid></search><sort><creationdate>20230101</creationdate><title>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</title><author>Shou, Zhaoyu ; Tang, Mengxue ; Wen, Hui ; Liu, Jinghua ; Mo, Jianwen ; Zhang, Huibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1ff57c32b5f440c292b16772b9d98a5724c6bbc2c99f39fec986a17d183940913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classroom Environment</topic><topic>Computation</topic><topic>Data Analysis</topic><topic>Decision Making</topic><topic>Educational evaluation</topic><topic>Entropy (statistics)</topic><topic>Evaluation Methods</topic><topic>Methods</topic><topic>Mineral industry</topic><topic>Mining industry</topic><topic>Multidimensional data</topic><topic>Network Analysis</topic><topic>Nodes</topic><topic>Social Networks</topic><topic>Student Evaluation</topic><topic>Students</topic><topic>Technical services</topic><topic>Technical Support</topic><topic>Weighting methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shou, Zhaoyu</creatorcontrib><creatorcontrib>Tang, Mengxue</creatorcontrib><creatorcontrib>Wen, Hui</creatorcontrib><creatorcontrib>Liu, Jinghua</creatorcontrib><creatorcontrib>Mo, Jianwen</creatorcontrib><creatorcontrib>Zhang, Huibing</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Education Database</collection><collection>Library Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of information and communication technology education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shou, Zhaoyu</au><au>Tang, Mengxue</au><au>Wen, Hui</au><au>Liu, Jinghua</au><au>Mo, Jianwen</au><au>Zhang, Huibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1393526</ericid><atitle>Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method</atitle><jtitle>International journal of information and communication technology education</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1550-1876</issn><eissn>1550-1337</eissn><abstract>In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJICTE.322773</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2429-5782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-1876
ispartof International journal of information and communication technology education, 2023-01, Vol.19 (1), p.1-19
issn 1550-1876
1550-1337
language eng
recordid cdi_eric_primary_EJ1393526
source Alma/SFX Local Collection
subjects Algorithms
Analysis
Classroom Environment
Computation
Data Analysis
Decision Making
Educational evaluation
Entropy (statistics)
Evaluation Methods
Methods
Mineral industry
Mining industry
Multidimensional data
Network Analysis
Nodes
Social Networks
Student Evaluation
Students
Technical services
Technical Support
Weighting methods
title Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Key%20Student%20Nodes%20Mining%20in%20the%20In-Class%20Social%20Network%20Based%20on%20Combined%20Weighted%20GRA-TOPSIS%20Method&rft.jtitle=International%20journal%20of%20information%20and%20communication%20technology%20education&rft.au=Shou,%20Zhaoyu&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1550-1876&rft.eissn=1550-1337&rft_id=info:doi/10.4018/IJICTE.322773&rft_dat=%3Cgale_eric_%3EA759564351%3C/gale_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813510566&rft_id=info:pmid/&rft_galeid=A759564351&rft_ericid=EJ1393526&rfr_iscdi=true