The Effects of Microsuppression on State Education Data Quality

States often turn to a data masking procedure called microsuppression in order to reduce the risk of disclosing student records when sharing data with external researchers. This process removes records deemed to have high risk for disclosure should data be released. However, this process can induce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of research on educational effectiveness 2020-10, Vol.13 (4), p.794-815
Hauptverfasser: Schauer, Jacob M., Kuyper, Arend M., Hedberg, Eric C., Hedges, Larry V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815
container_issue 4
container_start_page 794
container_title Journal of research on educational effectiveness
container_volume 13
creator Schauer, Jacob M.
Kuyper, Arend M.
Hedberg, Eric C.
Hedges, Larry V.
description States often turn to a data masking procedure called microsuppression in order to reduce the risk of disclosing student records when sharing data with external researchers. This process removes records deemed to have high risk for disclosure should data be released. However, this process can induce differences between the original data and the data that ultimately gets used in education research. This article assesses the extent to which microsuppression can bias key statistics in state education data and finds that while marginal test score means tend to be preserved in the masked data, conditional means for subgroups can exhibit bias as large as 0.3 standard deviations.
doi_str_mv 10.1080/19345747.2020.1814465
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1275417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1275417</ericid><sourcerecordid>2820844633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-93d61bf576dc8278a8fa2c531e188b1a0ab27e1c1364fc1c7ebc0ee8ebbd58e93</originalsourceid><addsrcrecordid>eNp9UF1LwzAUDaLgnP6EQcHnznw0TfqkMucXExHnc0jTBDu6piYpY__elM49Chfu5dxz7uEeAGYIzhHk8AYVJKMsY3MMcYQ4yrKcnoDJgKeUkeL0OGfsHFx4v4EwR4TwCbhdf-tkaYxWwSfWJG-1ctb3Xee097Vtk1ifQYZIqnolwwA9yCCTj142ddhfgjMjG6-vDn0Kvh6X68Vzunp_elncr1JFIA9pQaoclYayvFIcMy65kVhRgjTivEQSyhIzjRQieWYUUkyXCmrNdVlWlOuCTMH1eLdz9qfXPoiN7V0bLQXmGPL4MiGRRUfW8IR32ojO1Vvp9gJBMWQl_rISQ1bikFXUzUaddrU6apavCDOaIRb3d-O-bo11W7mzrqlEkPvGOuNkq2ovyP8Wv5sZeW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820844633</pqid></control><display><type>article</type><title>The Effects of Microsuppression on State Education Data Quality</title><source>Education Source</source><creator>Schauer, Jacob M. ; Kuyper, Arend M. ; Hedberg, Eric C. ; Hedges, Larry V.</creator><creatorcontrib>Schauer, Jacob M. ; Kuyper, Arend M. ; Hedberg, Eric C. ; Hedges, Larry V.</creatorcontrib><description>States often turn to a data masking procedure called microsuppression in order to reduce the risk of disclosing student records when sharing data with external researchers. This process removes records deemed to have high risk for disclosure should data be released. However, this process can induce differences between the original data and the data that ultimately gets used in education research. This article assesses the extent to which microsuppression can bias key statistics in state education data and finds that while marginal test score means tend to be preserved in the masked data, conditional means for subgroups can exhibit bias as large as 0.3 standard deviations.</description><identifier>ISSN: 1934-5747</identifier><identifier>EISSN: 1934-5739</identifier><identifier>DOI: 10.1080/19345747.2020.1814465</identifier><language>eng</language><publisher>Philadelphia: Routledge</publisher><subject>Data disclosure ; data privacy ; data quality ; Data Use ; Disclosure ; Educational Legislation ; Educational Research ; FERPA ; Parent Rights ; Privacy ; Scores ; SLDS ; State Policy ; Statistical Bias ; Student Records ; Student Rights</subject><ispartof>Journal of research on educational effectiveness, 2020-10, Vol.13 (4), p.794-815</ispartof><rights>2020 Taylor &amp; Francis Group, LLC 2020</rights><rights>2020 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-93d61bf576dc8278a8fa2c531e188b1a0ab27e1c1364fc1c7ebc0ee8ebbd58e93</cites><orcidid>0000-0002-9041-7082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1275417$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Schauer, Jacob M.</creatorcontrib><creatorcontrib>Kuyper, Arend M.</creatorcontrib><creatorcontrib>Hedberg, Eric C.</creatorcontrib><creatorcontrib>Hedges, Larry V.</creatorcontrib><title>The Effects of Microsuppression on State Education Data Quality</title><title>Journal of research on educational effectiveness</title><description>States often turn to a data masking procedure called microsuppression in order to reduce the risk of disclosing student records when sharing data with external researchers. This process removes records deemed to have high risk for disclosure should data be released. However, this process can induce differences between the original data and the data that ultimately gets used in education research. This article assesses the extent to which microsuppression can bias key statistics in state education data and finds that while marginal test score means tend to be preserved in the masked data, conditional means for subgroups can exhibit bias as large as 0.3 standard deviations.</description><subject>Data disclosure</subject><subject>data privacy</subject><subject>data quality</subject><subject>Data Use</subject><subject>Disclosure</subject><subject>Educational Legislation</subject><subject>Educational Research</subject><subject>FERPA</subject><subject>Parent Rights</subject><subject>Privacy</subject><subject>Scores</subject><subject>SLDS</subject><subject>State Policy</subject><subject>Statistical Bias</subject><subject>Student Records</subject><subject>Student Rights</subject><issn>1934-5747</issn><issn>1934-5739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAUDaLgnP6EQcHnznw0TfqkMucXExHnc0jTBDu6piYpY__elM49Chfu5dxz7uEeAGYIzhHk8AYVJKMsY3MMcYQ4yrKcnoDJgKeUkeL0OGfsHFx4v4EwR4TwCbhdf-tkaYxWwSfWJG-1ctb3Xee097Vtk1ifQYZIqnolwwA9yCCTj142ddhfgjMjG6-vDn0Kvh6X68Vzunp_elncr1JFIA9pQaoclYayvFIcMy65kVhRgjTivEQSyhIzjRQieWYUUkyXCmrNdVlWlOuCTMH1eLdz9qfXPoiN7V0bLQXmGPL4MiGRRUfW8IR32ojO1Vvp9gJBMWQl_rISQ1bikFXUzUaddrU6apavCDOaIRb3d-O-bo11W7mzrqlEkPvGOuNkq2ovyP8Wv5sZeW4</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Schauer, Jacob M.</creator><creator>Kuyper, Arend M.</creator><creator>Hedberg, Eric C.</creator><creator>Hedges, Larry V.</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9041-7082</orcidid></search><sort><creationdate>20201001</creationdate><title>The Effects of Microsuppression on State Education Data Quality</title><author>Schauer, Jacob M. ; Kuyper, Arend M. ; Hedberg, Eric C. ; Hedges, Larry V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-93d61bf576dc8278a8fa2c531e188b1a0ab27e1c1364fc1c7ebc0ee8ebbd58e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data disclosure</topic><topic>data privacy</topic><topic>data quality</topic><topic>Data Use</topic><topic>Disclosure</topic><topic>Educational Legislation</topic><topic>Educational Research</topic><topic>FERPA</topic><topic>Parent Rights</topic><topic>Privacy</topic><topic>Scores</topic><topic>SLDS</topic><topic>State Policy</topic><topic>Statistical Bias</topic><topic>Student Records</topic><topic>Student Rights</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauer, Jacob M.</creatorcontrib><creatorcontrib>Kuyper, Arend M.</creatorcontrib><creatorcontrib>Hedberg, Eric C.</creatorcontrib><creatorcontrib>Hedges, Larry V.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Journal of research on educational effectiveness</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauer, Jacob M.</au><au>Kuyper, Arend M.</au><au>Hedberg, Eric C.</au><au>Hedges, Larry V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1275417</ericid><atitle>The Effects of Microsuppression on State Education Data Quality</atitle><jtitle>Journal of research on educational effectiveness</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>794</spage><epage>815</epage><pages>794-815</pages><issn>1934-5747</issn><eissn>1934-5739</eissn><abstract>States often turn to a data masking procedure called microsuppression in order to reduce the risk of disclosing student records when sharing data with external researchers. This process removes records deemed to have high risk for disclosure should data be released. However, this process can induce differences between the original data and the data that ultimately gets used in education research. This article assesses the extent to which microsuppression can bias key statistics in state education data and finds that while marginal test score means tend to be preserved in the masked data, conditional means for subgroups can exhibit bias as large as 0.3 standard deviations.</abstract><cop>Philadelphia</cop><pub>Routledge</pub><doi>10.1080/19345747.2020.1814465</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9041-7082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1934-5747
ispartof Journal of research on educational effectiveness, 2020-10, Vol.13 (4), p.794-815
issn 1934-5747
1934-5739
language eng
recordid cdi_eric_primary_EJ1275417
source Education Source
subjects Data disclosure
data privacy
data quality
Data Use
Disclosure
Educational Legislation
Educational Research
FERPA
Parent Rights
Privacy
Scores
SLDS
State Policy
Statistical Bias
Student Records
Student Rights
title The Effects of Microsuppression on State Education Data Quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effects%20of%20Microsuppression%20on%20State%20Education%20Data%20Quality&rft.jtitle=Journal%20of%20research%20on%20educational%20effectiveness&rft.au=Schauer,%20Jacob%20M.&rft.date=2020-10-01&rft.volume=13&rft.issue=4&rft.spage=794&rft.epage=815&rft.pages=794-815&rft.issn=1934-5747&rft.eissn=1934-5739&rft_id=info:doi/10.1080/19345747.2020.1814465&rft_dat=%3Cproquest_eric_%3E2820844633%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820844633&rft_id=info:pmid/&rft_ericid=EJ1275417&rfr_iscdi=true