A Note on Using the Nonparametric Levene Test When Population Means Are Unequal

This computer simulation study evaluates the robustness of the nonparametric Levene test of equal variances (Nordstokke & Zumbo, 2010) when sampling from populations with unequal (and unknown) means. Testing for population mean differences when population variances are unknown and possibly unequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Practical assessment, research & evaluation research & evaluation, 2018-09, Vol.23 (13), p.13
Hauptverfasser: Shear, Benjamin R, Nordstokke, David W, Zumbo, Bruno D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 13
container_title Practical assessment, research & evaluation
container_volume 23
creator Shear, Benjamin R
Nordstokke, David W
Zumbo, Bruno D
description This computer simulation study evaluates the robustness of the nonparametric Levene test of equal variances (Nordstokke & Zumbo, 2010) when sampling from populations with unequal (and unknown) means. Testing for population mean differences when population variances are unknown and possibly unequal is often referred to as the Behrens-Fisher problem when the populations are normally distributed, and the generalized Behrens-Fisher problem when the populations are non-normal. The nonparametric Levene test was developed to overcome reductions in power of the original Levene test of equal variances in the case of the generalized Behrens-Fisher problem. We use a Monte Carlo computer simulation to demonstrate that sampling from populations with unequal and unknown means can lead to incorrect (either inflated or decreased) Type I error rates of the nonparametric Levene test. Centering samples using either sample means or medians does not correct the Type I error rates. This note is intended to make applied researchers aware of this problem when testing for the equality of population variances with the NPL test and in general.
doi_str_mv 10.7275/bwvg-d091
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1192846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1192846</ericid><sourcerecordid>2364851889</sourcerecordid><originalsourceid>FETCH-LOGICAL-e509-7be7013095fcf835b67fc233f1119b80e225eede3ca4819f54318029c2d96dbe3</originalsourceid><addsrcrecordid>eNpNjk1Lw0AYhBdRsFYP_gBhwXN0P7LZ3WMo9YtoPaR4DJvkTZuSbtLdpOK_d6EePM0wwwwPQreUPEgmxWP5fdxENdH0DM2o4DSSksbn__wluvJ-RwjjnLEZWqX4ox8B9xavfWs3eNxCSOxgnNnD6NoKZ3AECzgHP-KvLVj82Q9TZ8Y2bN7BWI9TB3ht4TCZ7hpdNKbzcPOnc5Q_LfPFS5Stnl8XaRaBIDqSJUhCOdGiqRrFRZnIpgpEDaVUl4oAYwKgBl6ZWFHdiJhTRZiuWK2TugQ-R3enWwiExeDavXE_xfItzJmKk9Dfn_rB9YcpkBe7fnI2EBWMJ7ESVCnNfwG4Qlfe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364851889</pqid></control><display><type>article</type><title>A Note on Using the Nonparametric Levene Test When Population Means Are Unequal</title><source>ERIC - Full Text Only (Discovery)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>EBSCOhost Education Source</source><creator>Shear, Benjamin R ; Nordstokke, David W ; Zumbo, Bruno D</creator><creatorcontrib>Shear, Benjamin R ; Nordstokke, David W ; Zumbo, Bruno D</creatorcontrib><description>This computer simulation study evaluates the robustness of the nonparametric Levene test of equal variances (Nordstokke &amp; Zumbo, 2010) when sampling from populations with unequal (and unknown) means. Testing for population mean differences when population variances are unknown and possibly unequal is often referred to as the Behrens-Fisher problem when the populations are normally distributed, and the generalized Behrens-Fisher problem when the populations are non-normal. The nonparametric Levene test was developed to overcome reductions in power of the original Levene test of equal variances in the case of the generalized Behrens-Fisher problem. We use a Monte Carlo computer simulation to demonstrate that sampling from populations with unequal and unknown means can lead to incorrect (either inflated or decreased) Type I error rates of the nonparametric Levene test. Centering samples using either sample means or medians does not correct the Type I error rates. This note is intended to make applied researchers aware of this problem when testing for the equality of population variances with the NPL test and in general.</description><identifier>ISSN: 1531-7714</identifier><identifier>EISSN: 1531-7714</identifier><identifier>DOI: 10.7275/bwvg-d091</identifier><language>eng</language><publisher>College Park: Practical Assessment, Research and Evaluation, Inc</publisher><subject>Computer Simulation ; Error of Measurement ; Monte Carlo Methods ; Nonparametric Statistics ; Population ; Sampling</subject><ispartof>Practical assessment, research &amp; evaluation, 2018-09, Vol.23 (13), p.13</ispartof><rights>2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://scholarworks.umass.edu/pare/policies.html</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,690,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1192846$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Shear, Benjamin R</creatorcontrib><creatorcontrib>Nordstokke, David W</creatorcontrib><creatorcontrib>Zumbo, Bruno D</creatorcontrib><title>A Note on Using the Nonparametric Levene Test When Population Means Are Unequal</title><title>Practical assessment, research &amp; evaluation</title><description>This computer simulation study evaluates the robustness of the nonparametric Levene test of equal variances (Nordstokke &amp; Zumbo, 2010) when sampling from populations with unequal (and unknown) means. Testing for population mean differences when population variances are unknown and possibly unequal is often referred to as the Behrens-Fisher problem when the populations are normally distributed, and the generalized Behrens-Fisher problem when the populations are non-normal. The nonparametric Levene test was developed to overcome reductions in power of the original Levene test of equal variances in the case of the generalized Behrens-Fisher problem. We use a Monte Carlo computer simulation to demonstrate that sampling from populations with unequal and unknown means can lead to incorrect (either inflated or decreased) Type I error rates of the nonparametric Levene test. Centering samples using either sample means or medians does not correct the Type I error rates. This note is intended to make applied researchers aware of this problem when testing for the equality of population variances with the NPL test and in general.</description><subject>Computer Simulation</subject><subject>Error of Measurement</subject><subject>Monte Carlo Methods</subject><subject>Nonparametric Statistics</subject><subject>Population</subject><subject>Sampling</subject><issn>1531-7714</issn><issn>1531-7714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GA5</sourceid><recordid>eNpNjk1Lw0AYhBdRsFYP_gBhwXN0P7LZ3WMo9YtoPaR4DJvkTZuSbtLdpOK_d6EePM0wwwwPQreUPEgmxWP5fdxENdH0DM2o4DSSksbn__wluvJ-RwjjnLEZWqX4ox8B9xavfWs3eNxCSOxgnNnD6NoKZ3AECzgHP-KvLVj82Q9TZ8Y2bN7BWI9TB3ht4TCZ7hpdNKbzcPOnc5Q_LfPFS5Stnl8XaRaBIDqSJUhCOdGiqRrFRZnIpgpEDaVUl4oAYwKgBl6ZWFHdiJhTRZiuWK2TugQ-R3enWwiExeDavXE_xfItzJmKk9Dfn_rB9YcpkBe7fnI2EBWMJ7ESVCnNfwG4Qlfe</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Shear, Benjamin R</creator><creator>Nordstokke, David W</creator><creator>Zumbo, Bruno D</creator><general>Practical Assessment, Research and Evaluation, Inc</general><general>Center for Educational Assessment</general><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>M0P</scope><scope>PIMPY</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>ERI</scope><scope>GA5</scope></search><sort><creationdate>201809</creationdate><title>A Note on Using the Nonparametric Levene Test When Population Means Are Unequal</title><author>Shear, Benjamin R ; Nordstokke, David W ; Zumbo, Bruno D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e509-7be7013095fcf835b67fc233f1119b80e225eede3ca4819f54318029c2d96dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Simulation</topic><topic>Error of Measurement</topic><topic>Monte Carlo Methods</topic><topic>Nonparametric Statistics</topic><topic>Population</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shear, Benjamin R</creatorcontrib><creatorcontrib>Nordstokke, David W</creatorcontrib><creatorcontrib>Zumbo, Bruno D</creatorcontrib><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Education Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><jtitle>Practical assessment, research &amp; evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shear, Benjamin R</au><au>Nordstokke, David W</au><au>Zumbo, Bruno D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1192846</ericid><atitle>A Note on Using the Nonparametric Levene Test When Population Means Are Unequal</atitle><jtitle>Practical assessment, research &amp; evaluation</jtitle><date>2018-09</date><risdate>2018</risdate><volume>23</volume><issue>13</issue><spage>13</spage><pages>13-</pages><issn>1531-7714</issn><eissn>1531-7714</eissn><abstract>This computer simulation study evaluates the robustness of the nonparametric Levene test of equal variances (Nordstokke &amp; Zumbo, 2010) when sampling from populations with unequal (and unknown) means. Testing for population mean differences when population variances are unknown and possibly unequal is often referred to as the Behrens-Fisher problem when the populations are normally distributed, and the generalized Behrens-Fisher problem when the populations are non-normal. The nonparametric Levene test was developed to overcome reductions in power of the original Levene test of equal variances in the case of the generalized Behrens-Fisher problem. We use a Monte Carlo computer simulation to demonstrate that sampling from populations with unequal and unknown means can lead to incorrect (either inflated or decreased) Type I error rates of the nonparametric Levene test. Centering samples using either sample means or medians does not correct the Type I error rates. This note is intended to make applied researchers aware of this problem when testing for the equality of population variances with the NPL test and in general.</abstract><cop>College Park</cop><pub>Practical Assessment, Research and Evaluation, Inc</pub><doi>10.7275/bwvg-d091</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1531-7714
ispartof Practical assessment, research & evaluation, 2018-09, Vol.23 (13), p.13
issn 1531-7714
1531-7714
language eng
recordid cdi_eric_primary_EJ1192846
source ERIC - Full Text Only (Discovery); EZB-FREE-00999 freely available EZB journals; EBSCOhost Education Source
subjects Computer Simulation
Error of Measurement
Monte Carlo Methods
Nonparametric Statistics
Population
Sampling
title A Note on Using the Nonparametric Levene Test When Population Means Are Unequal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Using%20the%20Nonparametric%20Levene%20Test%20When%20Population%20Means%20Are%20Unequal&rft.jtitle=Practical%20assessment,%20research%20&%20evaluation&rft.au=Shear,%20Benjamin%20R&rft.date=2018-09&rft.volume=23&rft.issue=13&rft.spage=13&rft.pages=13-&rft.issn=1531-7714&rft.eissn=1531-7714&rft_id=info:doi/10.7275/bwvg-d091&rft_dat=%3Cproquest_eric_%3E2364851889%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364851889&rft_id=info:pmid/&rft_ericid=EJ1192846&rfr_iscdi=true