Heads Or Tails (Success Or Failure)? Using Logit Modeling To Predict Student Retention And Progression

Using a sample of 2,137 university students and applying the logit model, we find that the probability for students to return in fall 2008 is higher with a higher cumulative GPA, a higher grade for SE 101, and a returning status in the previous semester.  Several other explanatory variables are test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contemporary issues in education research (Littleton, Colo.) Colo.), 2010-05, Vol.3 (5), p.35
Hauptverfasser: Budden, Michael C., Hsing, Yu, Budden, Connie B., Hall, Michelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 35
container_title Contemporary issues in education research (Littleton, Colo.)
container_volume 3
creator Budden, Michael C.
Hsing, Yu
Budden, Connie B.
Hall, Michelle
description Using a sample of 2,137 university students and applying the logit model, we find that the probability for students to return in fall 2008 is higher with a higher cumulative GPA, a higher grade for SE 101, and a returning status in the previous semester.  Several other explanatory variables are tested and have insignificant coefficients. A few variables such as the Board of Regent’s core requirements (CORE) and high school graduating GPA (HSGPA) have the expected signs and z-statistics closer to one, suggesting that the correlation coefficient may rise if the sample size were larger.  The findings suggest that the cumulative GPA is a dominant factor and that the large number of failures in SE 101 may need to be examined in order to fulfill its described purpose: “a course designed to ensure first-year student success.”
doi_str_mv 10.19030/cier.v3i5.204
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1072657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1072657</ericid><sourcerecordid>2054007861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1339-c466decc6eff5496e3459e9b952e789824fe956f1021a0b1c98d26c89caac8953</originalsourceid><addsrcrecordid>eNo9UMFKAzEUDKJgrV69CcGTHnZNNptscpJSWqtUKrYFb2GbfVtS6qYmu4J_b9qKlzfvzQzDYxC6piSlijDyYCz49JtZnmYkP0E9qnKaFFx8nB52knCZF-foIoQNIaJQlPdQPYGyCnjm8aK024Dv5p0xEA7MODKdh_tHvAy2WeOpW9sWv7oKtvtz4fCbh8qaFs_broKmxe_QRrCuwYOmiqpb-5gV70t0VpfbAFd_2EfL8WgxnCTT2dPzcDBNDGVMJSYXogJjBNQ1z5UAlnMFaqV4BoVUMstrUFzUlGS0JCtqlKwyYaQyZRknZ310c8wFb43eeftZ-h89eqGkyAQvon571HfefXUQWr1xnW_iS5oJUQgpMxVN6dFkvAvBQ_0fRIk-VK33Vet91TpWzX4BIEtxNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>366768829</pqid></control><display><type>article</type><title>Heads Or Tails (Success Or Failure)? Using Logit Modeling To Predict Student Retention And Progression</title><source>ERIC - Full Text Only (Discovery)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Budden, Michael C. ; Hsing, Yu ; Budden, Connie B. ; Hall, Michelle</creator><creatorcontrib>Budden, Michael C. ; Hsing, Yu ; Budden, Connie B. ; Hall, Michelle</creatorcontrib><description>Using a sample of 2,137 university students and applying the logit model, we find that the probability for students to return in fall 2008 is higher with a higher cumulative GPA, a higher grade for SE 101, and a returning status in the previous semester.  Several other explanatory variables are tested and have insignificant coefficients. A few variables such as the Board of Regent’s core requirements (CORE) and high school graduating GPA (HSGPA) have the expected signs and z-statistics closer to one, suggesting that the correlation coefficient may rise if the sample size were larger.  The findings suggest that the cumulative GPA is a dominant factor and that the large number of failures in SE 101 may need to be examined in order to fulfill its described purpose: “a course designed to ensure first-year student success.”</description><identifier>ISSN: 1940-5847</identifier><identifier>EISSN: 1941-756X</identifier><identifier>DOI: 10.19030/cier.v3i5.204</identifier><language>eng</language><publisher>Littleton: The Clute Institute</publisher><subject>Academic achievement ; Academic Persistence ; Accountability ; College Freshmen ; College Students ; Correlation ; Correlation analysis ; Curriculum development ; Dependent variables ; Economic development ; Elementary school students ; Grade Point Average ; Grades (Scholastic) ; Graduation rate ; High School Graduates ; Higher education ; Learning ; Louisiana ; Outcomes of Education ; Predictions ; Probability ; Progress ; Regression (Statistics) ; School Holding Power ; Student retention ; Student writing ; Studies ; Success ; Tuition ; University students ; Variables</subject><ispartof>Contemporary issues in education research (Littleton, Colo.), 2010-05, Vol.3 (5), p.35</ispartof><rights>Copyright Clute Institute for Academic Research May 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1339-c466decc6eff5496e3459e9b952e789824fe956f1021a0b1c98d26c89caac8953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,687,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1072657$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Budden, Michael C.</creatorcontrib><creatorcontrib>Hsing, Yu</creatorcontrib><creatorcontrib>Budden, Connie B.</creatorcontrib><creatorcontrib>Hall, Michelle</creatorcontrib><title>Heads Or Tails (Success Or Failure)? Using Logit Modeling To Predict Student Retention And Progression</title><title>Contemporary issues in education research (Littleton, Colo.)</title><description>Using a sample of 2,137 university students and applying the logit model, we find that the probability for students to return in fall 2008 is higher with a higher cumulative GPA, a higher grade for SE 101, and a returning status in the previous semester.  Several other explanatory variables are tested and have insignificant coefficients. A few variables such as the Board of Regent’s core requirements (CORE) and high school graduating GPA (HSGPA) have the expected signs and z-statistics closer to one, suggesting that the correlation coefficient may rise if the sample size were larger.  The findings suggest that the cumulative GPA is a dominant factor and that the large number of failures in SE 101 may need to be examined in order to fulfill its described purpose: “a course designed to ensure first-year student success.”</description><subject>Academic achievement</subject><subject>Academic Persistence</subject><subject>Accountability</subject><subject>College Freshmen</subject><subject>College Students</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Curriculum development</subject><subject>Dependent variables</subject><subject>Economic development</subject><subject>Elementary school students</subject><subject>Grade Point Average</subject><subject>Grades (Scholastic)</subject><subject>Graduation rate</subject><subject>High School Graduates</subject><subject>Higher education</subject><subject>Learning</subject><subject>Louisiana</subject><subject>Outcomes of Education</subject><subject>Predictions</subject><subject>Probability</subject><subject>Progress</subject><subject>Regression (Statistics)</subject><subject>School Holding Power</subject><subject>Student retention</subject><subject>Student writing</subject><subject>Studies</subject><subject>Success</subject><subject>Tuition</subject><subject>University students</subject><subject>Variables</subject><issn>1940-5847</issn><issn>1941-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>GA5</sourceid><recordid>eNo9UMFKAzEUDKJgrV69CcGTHnZNNptscpJSWqtUKrYFb2GbfVtS6qYmu4J_b9qKlzfvzQzDYxC6piSlijDyYCz49JtZnmYkP0E9qnKaFFx8nB52knCZF-foIoQNIaJQlPdQPYGyCnjm8aK024Dv5p0xEA7MODKdh_tHvAy2WeOpW9sWv7oKtvtz4fCbh8qaFs_broKmxe_QRrCuwYOmiqpb-5gV70t0VpfbAFd_2EfL8WgxnCTT2dPzcDBNDGVMJSYXogJjBNQ1z5UAlnMFaqV4BoVUMstrUFzUlGS0JCtqlKwyYaQyZRknZ310c8wFb43eeftZ-h89eqGkyAQvon571HfefXUQWr1xnW_iS5oJUQgpMxVN6dFkvAvBQ_0fRIk-VK33Vet91TpWzX4BIEtxNQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Budden, Michael C.</creator><creator>Hsing, Yu</creator><creator>Budden, Connie B.</creator><creator>Hall, Michelle</creator><general>The Clute Institute</general><general>Clute Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>LIQON</scope><scope>M0C</scope><scope>M0P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>ERI</scope><scope>GA5</scope></search><sort><creationdate>20100501</creationdate><title>Heads Or Tails (Success Or Failure)? Using Logit Modeling To Predict Student Retention And Progression</title><author>Budden, Michael C. ; Hsing, Yu ; Budden, Connie B. ; Hall, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1339-c466decc6eff5496e3459e9b952e789824fe956f1021a0b1c98d26c89caac8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Academic achievement</topic><topic>Academic Persistence</topic><topic>Accountability</topic><topic>College Freshmen</topic><topic>College Students</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Curriculum development</topic><topic>Dependent variables</topic><topic>Economic development</topic><topic>Elementary school students</topic><topic>Grade Point Average</topic><topic>Grades (Scholastic)</topic><topic>Graduation rate</topic><topic>High School Graduates</topic><topic>Higher education</topic><topic>Learning</topic><topic>Louisiana</topic><topic>Outcomes of Education</topic><topic>Predictions</topic><topic>Probability</topic><topic>Progress</topic><topic>Regression (Statistics)</topic><topic>School Holding Power</topic><topic>Student retention</topic><topic>Student writing</topic><topic>Studies</topic><topic>Success</topic><topic>Tuition</topic><topic>University students</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Budden, Michael C.</creatorcontrib><creatorcontrib>Hsing, Yu</creatorcontrib><creatorcontrib>Budden, Connie B.</creatorcontrib><creatorcontrib>Hall, Michelle</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><jtitle>Contemporary issues in education research (Littleton, Colo.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budden, Michael C.</au><au>Hsing, Yu</au><au>Budden, Connie B.</au><au>Hall, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1072657</ericid><atitle>Heads Or Tails (Success Or Failure)? Using Logit Modeling To Predict Student Retention And Progression</atitle><jtitle>Contemporary issues in education research (Littleton, Colo.)</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>3</volume><issue>5</issue><spage>35</spage><pages>35-</pages><issn>1940-5847</issn><eissn>1941-756X</eissn><abstract>Using a sample of 2,137 university students and applying the logit model, we find that the probability for students to return in fall 2008 is higher with a higher cumulative GPA, a higher grade for SE 101, and a returning status in the previous semester.  Several other explanatory variables are tested and have insignificant coefficients. A few variables such as the Board of Regent’s core requirements (CORE) and high school graduating GPA (HSGPA) have the expected signs and z-statistics closer to one, suggesting that the correlation coefficient may rise if the sample size were larger.  The findings suggest that the cumulative GPA is a dominant factor and that the large number of failures in SE 101 may need to be examined in order to fulfill its described purpose: “a course designed to ensure first-year student success.”</abstract><cop>Littleton</cop><pub>The Clute Institute</pub><doi>10.19030/cier.v3i5.204</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1940-5847
ispartof Contemporary issues in education research (Littleton, Colo.), 2010-05, Vol.3 (5), p.35
issn 1940-5847
1941-756X
language eng
recordid cdi_eric_primary_EJ1072657
source ERIC - Full Text Only (Discovery); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Academic achievement
Academic Persistence
Accountability
College Freshmen
College Students
Correlation
Correlation analysis
Curriculum development
Dependent variables
Economic development
Elementary school students
Grade Point Average
Grades (Scholastic)
Graduation rate
High School Graduates
Higher education
Learning
Louisiana
Outcomes of Education
Predictions
Probability
Progress
Regression (Statistics)
School Holding Power
Student retention
Student writing
Studies
Success
Tuition
University students
Variables
title Heads Or Tails (Success Or Failure)? Using Logit Modeling To Predict Student Retention And Progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heads%20Or%20Tails%20(Success%20Or%20Failure)?%20Using%20Logit%20Modeling%20To%20Predict%20Student%20Retention%20And%20Progression&rft.jtitle=Contemporary%20issues%20in%20education%20research%20(Littleton,%20Colo.)&rft.au=Budden,%20Michael%20C.&rft.date=2010-05-01&rft.volume=3&rft.issue=5&rft.spage=35&rft.pages=35-&rft.issn=1940-5847&rft.eissn=1941-756X&rft_id=info:doi/10.19030/cier.v3i5.204&rft_dat=%3Cproquest_eric_%3E2054007861%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=366768829&rft_id=info:pmid/&rft_ericid=EJ1072657&rfr_iscdi=true