Detecting bias in meta-analyses of distance education research: big pictures we can rely on
This article has two interrelated purposes. The first is to explain how various forms of bias, if introduced during any stage of a meta-analysis, can provide the consumer with a misimpression of the state of a research literature. Five of the most important bias-producing aspects of a meta-analysis...
Gespeichert in:
Veröffentlicht in: | Distance education 2014-09, Vol.35 (3), p.271-293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 3 |
container_start_page | 271 |
container_title | Distance education |
container_volume | 35 |
creator | Bernard, Robert M. Borokhovski, Eugene Tamim, Rana M. |
description | This article has two interrelated purposes. The first is to explain how various forms of bias, if introduced during any stage of a meta-analysis, can provide the consumer with a misimpression of the state of a research literature. Five of the most important bias-producing aspects of a meta-analysis are presented and discussed. Second, armed with this information, we examine 15 meta-analyses of the literatures of distance education (DE), online learning (OL), and blended learning (BL), conducted from 2000 to 2014, with the intention of assessing potential sources of bias in each. All of these meta-analyses address the question: "How do students taking courses through DE, OL, and BL compare to students engaged in pure classroom instruction in terms of learning achievement outcomes?" We argue that questions asked by primary researchers must change to reflect issues that will drive improvements in designing and implementing DE, OL, and BL courses. |
doi_str_mv | 10.1080/01587919.2015.957433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_EJ1044387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1044387</ericid><informt_id>10.3316/aeipt.205177</informt_id><sourcerecordid>3480075181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-40ac9a8ab24ae75ad4ed2a7804ecea1845db3458cd1c3abfa00cd55523d6c5da3</originalsourceid><addsrcrecordid>eNp9kEFv3CAQhVGVSt1u-g9aCSlnb8CAjXOJ2s2mSRSpl-TUA5qF8YbIaxxgFe2_r12nPebEiPe9B_MI-crZijPNzhlXum54syrHadWoWgrxgSy4rFXBeKNPyGJCion5RD6n9MwYL5XUC_L7CjPa7Psd3XpI1Pd0jxkK6KE7Jkw0tNT5lKG3SNEdLGQfehoxIUT7dDG6dnTwNh_GK_qK1MKkdkca-lPysYUu4Ze3c0kerzcP65vi_tfP2_X3-8JKXeVCMrANaNiWErBW4CS6EmrNJFoErqVyWyGVto5bAdsWGLNOKVUKV1nlQCzJ2Zw7xPBywJTNczjEcYFkeMUbUZZVVY2UnCkbQ0oRWzNEv4d4NJyZqUbzr0Yz1WjmGkfbt9mG0dv_ls0dZ1IKXY_6j1mPe58NoB-yecp5SMZBBuP7NvxVQtwZF_z0mBC8eiNLpng9hVzOITMOryF2zmQ4diG2cezeJyPe_eYfrgabSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619322666</pqid></control><display><type>article</type><title>Detecting bias in meta-analyses of distance education research: big pictures we can rely on</title><source>Education Source</source><creator>Bernard, Robert M. ; Borokhovski, Eugene ; Tamim, Rana M.</creator><creatorcontrib>Bernard, Robert M. ; Borokhovski, Eugene ; Tamim, Rana M.</creatorcontrib><description>This article has two interrelated purposes. The first is to explain how various forms of bias, if introduced during any stage of a meta-analysis, can provide the consumer with a misimpression of the state of a research literature. Five of the most important bias-producing aspects of a meta-analysis are presented and discussed. Second, armed with this information, we examine 15 meta-analyses of the literatures of distance education (DE), online learning (OL), and blended learning (BL), conducted from 2000 to 2014, with the intention of assessing potential sources of bias in each. All of these meta-analyses address the question: "How do students taking courses through DE, OL, and BL compare to students engaged in pure classroom instruction in terms of learning achievement outcomes?" We argue that questions asked by primary researchers must change to reflect issues that will drive improvements in designing and implementing DE, OL, and BL courses.</description><identifier>ISSN: 0158-7919</identifier><identifier>EISSN: 1475-0198</identifier><identifier>DOI: 10.1080/01587919.2015.957433</identifier><language>eng</language><publisher>Melbourne: Routledge</publisher><subject>Bias ; blended and online learning ; Blended Learning ; Distance Education ; Distance learning ; Education ; Educational Research ; Effect Size ; Electronic Learning ; Literature reviews ; Meta Analysis ; Nontraditional Education ; Online learning ; quality of research synthesis ; Research methodology ; Statistical bias</subject><ispartof>Distance education, 2014-09, Vol.35 (3), p.271-293</ispartof><rights>2014 Open and Distance Learning Association of Australia, Inc. 2014</rights><rights>2014 Open and Distance Learning Association of Australia, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-40ac9a8ab24ae75ad4ed2a7804ecea1845db3458cd1c3abfa00cd55523d6c5da3</citedby><cites>FETCH-LOGICAL-c486t-40ac9a8ab24ae75ad4ed2a7804ecea1845db3458cd1c3abfa00cd55523d6c5da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1044387$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernard, Robert M.</creatorcontrib><creatorcontrib>Borokhovski, Eugene</creatorcontrib><creatorcontrib>Tamim, Rana M.</creatorcontrib><title>Detecting bias in meta-analyses of distance education research: big pictures we can rely on</title><title>Distance education</title><description>This article has two interrelated purposes. The first is to explain how various forms of bias, if introduced during any stage of a meta-analysis, can provide the consumer with a misimpression of the state of a research literature. Five of the most important bias-producing aspects of a meta-analysis are presented and discussed. Second, armed with this information, we examine 15 meta-analyses of the literatures of distance education (DE), online learning (OL), and blended learning (BL), conducted from 2000 to 2014, with the intention of assessing potential sources of bias in each. All of these meta-analyses address the question: "How do students taking courses through DE, OL, and BL compare to students engaged in pure classroom instruction in terms of learning achievement outcomes?" We argue that questions asked by primary researchers must change to reflect issues that will drive improvements in designing and implementing DE, OL, and BL courses.</description><subject>Bias</subject><subject>blended and online learning</subject><subject>Blended Learning</subject><subject>Distance Education</subject><subject>Distance learning</subject><subject>Education</subject><subject>Educational Research</subject><subject>Effect Size</subject><subject>Electronic Learning</subject><subject>Literature reviews</subject><subject>Meta Analysis</subject><subject>Nontraditional Education</subject><subject>Online learning</subject><subject>quality of research synthesis</subject><subject>Research methodology</subject><subject>Statistical bias</subject><issn>0158-7919</issn><issn>1475-0198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv3CAQhVGVSt1u-g9aCSlnb8CAjXOJ2s2mSRSpl-TUA5qF8YbIaxxgFe2_r12nPebEiPe9B_MI-crZijPNzhlXum54syrHadWoWgrxgSy4rFXBeKNPyGJCion5RD6n9MwYL5XUC_L7CjPa7Psd3XpI1Pd0jxkK6KE7Jkw0tNT5lKG3SNEdLGQfehoxIUT7dDG6dnTwNh_GK_qK1MKkdkca-lPysYUu4Ze3c0kerzcP65vi_tfP2_X3-8JKXeVCMrANaNiWErBW4CS6EmrNJFoErqVyWyGVto5bAdsWGLNOKVUKV1nlQCzJ2Zw7xPBywJTNczjEcYFkeMUbUZZVVY2UnCkbQ0oRWzNEv4d4NJyZqUbzr0Yz1WjmGkfbt9mG0dv_ls0dZ1IKXY_6j1mPe58NoB-yecp5SMZBBuP7NvxVQtwZF_z0mBC8eiNLpng9hVzOITMOryF2zmQ4diG2cezeJyPe_eYfrgabSA</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Bernard, Robert M.</creator><creator>Borokhovski, Eugene</creator><creator>Tamim, Rana M.</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140902</creationdate><title>Detecting bias in meta-analyses of distance education research: big pictures we can rely on</title><author>Bernard, Robert M. ; Borokhovski, Eugene ; Tamim, Rana M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-40ac9a8ab24ae75ad4ed2a7804ecea1845db3458cd1c3abfa00cd55523d6c5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bias</topic><topic>blended and online learning</topic><topic>Blended Learning</topic><topic>Distance Education</topic><topic>Distance learning</topic><topic>Education</topic><topic>Educational Research</topic><topic>Effect Size</topic><topic>Electronic Learning</topic><topic>Literature reviews</topic><topic>Meta Analysis</topic><topic>Nontraditional Education</topic><topic>Online learning</topic><topic>quality of research synthesis</topic><topic>Research methodology</topic><topic>Statistical bias</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernard, Robert M.</creatorcontrib><creatorcontrib>Borokhovski, Eugene</creatorcontrib><creatorcontrib>Tamim, Rana M.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Distance education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernard, Robert M.</au><au>Borokhovski, Eugene</au><au>Tamim, Rana M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1044387</ericid><atitle>Detecting bias in meta-analyses of distance education research: big pictures we can rely on</atitle><jtitle>Distance education</jtitle><date>2014-09-02</date><risdate>2014</risdate><volume>35</volume><issue>3</issue><spage>271</spage><epage>293</epage><pages>271-293</pages><issn>0158-7919</issn><eissn>1475-0198</eissn><abstract>This article has two interrelated purposes. The first is to explain how various forms of bias, if introduced during any stage of a meta-analysis, can provide the consumer with a misimpression of the state of a research literature. Five of the most important bias-producing aspects of a meta-analysis are presented and discussed. Second, armed with this information, we examine 15 meta-analyses of the literatures of distance education (DE), online learning (OL), and blended learning (BL), conducted from 2000 to 2014, with the intention of assessing potential sources of bias in each. All of these meta-analyses address the question: "How do students taking courses through DE, OL, and BL compare to students engaged in pure classroom instruction in terms of learning achievement outcomes?" We argue that questions asked by primary researchers must change to reflect issues that will drive improvements in designing and implementing DE, OL, and BL courses.</abstract><cop>Melbourne</cop><pub>Routledge</pub><doi>10.1080/01587919.2015.957433</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0158-7919 |
ispartof | Distance education, 2014-09, Vol.35 (3), p.271-293 |
issn | 0158-7919 1475-0198 |
language | eng |
recordid | cdi_eric_primary_EJ1044387 |
source | Education Source |
subjects | Bias blended and online learning Blended Learning Distance Education Distance learning Education Educational Research Effect Size Electronic Learning Literature reviews Meta Analysis Nontraditional Education Online learning quality of research synthesis Research methodology Statistical bias |
title | Detecting bias in meta-analyses of distance education research: big pictures we can rely on |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20bias%20in%20meta-analyses%20of%20distance%20education%20research:%20big%20pictures%20we%20can%20rely%20on&rft.jtitle=Distance%20education&rft.au=Bernard,%20Robert%20M.&rft.date=2014-09-02&rft.volume=35&rft.issue=3&rft.spage=271&rft.epage=293&rft.pages=271-293&rft.issn=0158-7919&rft.eissn=1475-0198&rft_id=info:doi/10.1080/01587919.2015.957433&rft_dat=%3Cproquest_eric_%3E3480075181%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619322666&rft_id=info:pmid/&rft_ericid=EJ1044387&rft_informt_id=10.3316/aeipt.205177&rfr_iscdi=true |