Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model

Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psicológica (Valencia) 2014, Vol.35 (1), p.149
Hauptverfasser: Romero, Sonia J, Ordoñez, Xavier G, Ponsoda, Vincente, Revuelta, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 149
container_title Psicológica (Valencia)
container_volume 35
creator Romero, Sonia J
Ordoñez, Xavier G
Ponsoda, Vincente
Revuelta, Javier
description Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes representing the cognitive structure proposed for solve the test. Using a simulation study we investigated the performance of two model-fit statistics (MAD and LSD) to detect misspecifications in the Q-matrix within the least squares distance modeling framework. The manipulated test design factors included the number of respondents (300, 500, 1000), attributes (1, 2, 3, 4), and type of model (conjunctive vs disjunctive). We investigated MAD and LSD behavior under correct Q-matrix specification, with Q-misspecifications and in a real data application. The results shows that the two model-fit indexes were sensitive to Q-misspecifications, consequently, cut points were proposed to use in applied context.
format Article
fullrecord <record><control><sourceid>eric</sourceid><recordid>TN_cdi_eric_primary_EJ1022040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1022040</ericid><sourcerecordid>EJ1022040</sourcerecordid><originalsourceid>FETCH-LOGICAL-e177t-c233f23f0f473c4e6e2e9bf8604a74686d77ac70e5683d08ce0cb8b4213ec843</originalsourceid><addsrcrecordid>eNo1kMtOwzAURLMAiVL4BKT7A5Ec242dJUrLS4kQamBbOc51uSgkxXZ4fAG_TXmtRprRGWnmIJkxnmUpzxbFUXIcwhNjnBdMzpLPJUa0kcYBRgd3aW2ip3eoKYQdWnJkzU94H2jYQvM2QukpoicDbvTwYHrqzD9ejtuBIr0irKOfbJw8BpiGDj3ER4QKTYiwfpnMt7-kEM1gEeqxw_4kOXSmD3j6p_OkuVg15VVa3V5el-dViplSMbVcCMeFY04qYSXmyLFonc6ZNErmOu-UMlYxXORadExbZLbVreSZQKulmCdnv7X7BXaz8_Rs_MdmdZPt_2CSiS-4xVuq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model</title><source>ERIC - Full Text Only (Discovery)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Romero, Sonia J ; Ordoñez, Xavier G ; Ponsoda, Vincente ; Revuelta, Javier</creator><creatorcontrib>Romero, Sonia J ; Ordoñez, Xavier G ; Ponsoda, Vincente ; Revuelta, Javier</creatorcontrib><description>Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes representing the cognitive structure proposed for solve the test. Using a simulation study we investigated the performance of two model-fit statistics (MAD and LSD) to detect misspecifications in the Q-matrix within the least squares distance modeling framework. The manipulated test design factors included the number of respondents (300, 500, 1000), attributes (1, 2, 3, 4), and type of model (conjunctive vs disjunctive). We investigated MAD and LSD behavior under correct Q-matrix specification, with Q-misspecifications and in a real data application. The results shows that the two model-fit indexes were sensitive to Q-misspecifications, consequently, cut points were proposed to use in applied context.</description><identifier>ISSN: 0211-2159</identifier><language>eng</language><publisher>University of Valencia</publisher><subject>Cognitive Structures ; Cutting Scores ; Evaluation Methods ; Indexes ; Item Response Theory ; Least Squares Statistics ; Matrices ; Q Methodology ; Sample Size ; Sampling ; Simulation</subject><ispartof>Psicológica (Valencia), 2014, Vol.35 (1), p.149</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,687,776,780,881,4010</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1022040$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Romero, Sonia J</creatorcontrib><creatorcontrib>Ordoñez, Xavier G</creatorcontrib><creatorcontrib>Ponsoda, Vincente</creatorcontrib><creatorcontrib>Revuelta, Javier</creatorcontrib><title>Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model</title><title>Psicológica (Valencia)</title><description>Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes representing the cognitive structure proposed for solve the test. Using a simulation study we investigated the performance of two model-fit statistics (MAD and LSD) to detect misspecifications in the Q-matrix within the least squares distance modeling framework. The manipulated test design factors included the number of respondents (300, 500, 1000), attributes (1, 2, 3, 4), and type of model (conjunctive vs disjunctive). We investigated MAD and LSD behavior under correct Q-matrix specification, with Q-misspecifications and in a real data application. The results shows that the two model-fit indexes were sensitive to Q-misspecifications, consequently, cut points were proposed to use in applied context.</description><subject>Cognitive Structures</subject><subject>Cutting Scores</subject><subject>Evaluation Methods</subject><subject>Indexes</subject><subject>Item Response Theory</subject><subject>Least Squares Statistics</subject><subject>Matrices</subject><subject>Q Methodology</subject><subject>Sample Size</subject><subject>Sampling</subject><subject>Simulation</subject><issn>0211-2159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>GA5</sourceid><recordid>eNo1kMtOwzAURLMAiVL4BKT7A5Ec242dJUrLS4kQamBbOc51uSgkxXZ4fAG_TXmtRprRGWnmIJkxnmUpzxbFUXIcwhNjnBdMzpLPJUa0kcYBRgd3aW2ip3eoKYQdWnJkzU94H2jYQvM2QukpoicDbvTwYHrqzD9ejtuBIr0irKOfbJw8BpiGDj3ER4QKTYiwfpnMt7-kEM1gEeqxw_4kOXSmD3j6p_OkuVg15VVa3V5el-dViplSMbVcCMeFY04qYSXmyLFonc6ZNErmOu-UMlYxXORadExbZLbVreSZQKulmCdnv7X7BXaz8_Rs_MdmdZPt_2CSiS-4xVuq</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Romero, Sonia J</creator><creator>Ordoñez, Xavier G</creator><creator>Ponsoda, Vincente</creator><creator>Revuelta, Javier</creator><general>University of Valencia</general><scope>ERI</scope><scope>GA5</scope></search><sort><creationdate>2014</creationdate><title>Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model</title><author>Romero, Sonia J ; Ordoñez, Xavier G ; Ponsoda, Vincente ; Revuelta, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e177t-c233f23f0f473c4e6e2e9bf8604a74686d77ac70e5683d08ce0cb8b4213ec843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cognitive Structures</topic><topic>Cutting Scores</topic><topic>Evaluation Methods</topic><topic>Indexes</topic><topic>Item Response Theory</topic><topic>Least Squares Statistics</topic><topic>Matrices</topic><topic>Q Methodology</topic><topic>Sample Size</topic><topic>Sampling</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, Sonia J</creatorcontrib><creatorcontrib>Ordoñez, Xavier G</creatorcontrib><creatorcontrib>Ponsoda, Vincente</creatorcontrib><creatorcontrib>Revuelta, Javier</creatorcontrib><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><jtitle>Psicológica (Valencia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, Sonia J</au><au>Ordoñez, Xavier G</au><au>Ponsoda, Vincente</au><au>Revuelta, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1022040</ericid><atitle>Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model</atitle><jtitle>Psicológica (Valencia)</jtitle><date>2014</date><risdate>2014</risdate><volume>35</volume><issue>1</issue><spage>149</spage><pages>149-</pages><issn>0211-2159</issn><abstract>Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes representing the cognitive structure proposed for solve the test. Using a simulation study we investigated the performance of two model-fit statistics (MAD and LSD) to detect misspecifications in the Q-matrix within the least squares distance modeling framework. The manipulated test design factors included the number of respondents (300, 500, 1000), attributes (1, 2, 3, 4), and type of model (conjunctive vs disjunctive). We investigated MAD and LSD behavior under correct Q-matrix specification, with Q-misspecifications and in a real data application. The results shows that the two model-fit indexes were sensitive to Q-misspecifications, consequently, cut points were proposed to use in applied context.</abstract><pub>University of Valencia</pub><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0211-2159
ispartof Psicológica (Valencia), 2014, Vol.35 (1), p.149
issn 0211-2159
language eng
recordid cdi_eric_primary_EJ1022040
source ERIC - Full Text Only (Discovery); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Cognitive Structures
Cutting Scores
Evaluation Methods
Indexes
Item Response Theory
Least Squares Statistics
Matrices
Q Methodology
Sample Size
Sampling
Simulation
title Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Q-Matrix%20Misspecification%20Using%20Two%20Criteria%20for%20Validation%20of%20Cognitive%20Structures%20under%20the%20Least%20Squares%20Distance%20Model&rft.jtitle=Psicol%C3%B3gica%20(Valencia)&rft.au=Romero,%20Sonia%20J&rft.date=2014&rft.volume=35&rft.issue=1&rft.spage=149&rft.pages=149-&rft.issn=0211-2159&rft_id=info:doi/&rft_dat=%3Ceric%3EEJ1022040%3C/eric%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ1022040&rfr_iscdi=true