Variable Parts: A New Perspective on Proportional Relationships and Linear Functions
We present a mathematical analysis that distinguishes two quantitative perspectives on ratios and proportional relationships: Multiple Batches and Variable Parts. We argue that (a) existing research on proportional relationships has addressed Multiple Batches but has largely overlooked Variable Part...
Gespeichert in:
Veröffentlicht in: | North American Chapter of the International Group for the Psychology of Mathematics Education 2014 |
---|---|
Hauptverfasser: | , |
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | North American Chapter of the International Group for the Psychology of Mathematics Education |
container_volume | |
creator | Beckmann, Sybilla Izsák, Andrew |
description | We present a mathematical analysis that distinguishes two quantitative perspectives on ratios and proportional relationships: Multiple Batches and Variable Parts. We argue that (a) existing research on proportional relationships has addressed Multiple Batches but has largely overlooked Variable Parts, (b) Multiple Batches makes the co-variation aspect of proportional relationships more explicit, while Variable Parts makes the fixed multiplicative relationship between two quantities more explicit, (c) the distinction between Multiple Batches and Variable Parts is orthogonal to the within-measure-space versus between-measure-space ratio distinction, and (d) Variable Parts affords promising new approaches for addressing linear relationships. [For the complete proceedings, see ED597799.] |
format | Report |
fullrecord | <record><control><sourceid>eric_GA5</sourceid><recordid>TN_cdi_eric_primary_ED599738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>ED599738</ericid><sourcerecordid>ED599738</sourcerecordid><originalsourceid>FETCH-eric_primary_ED5997383</originalsourceid><addsrcrecordid>eNrjZAgJSyzKTEzKSVUISCwqKbZScFTwSy1XCEgtKi5ITS7JLEtVyM9TCCjKL8gvKsnMz0vMUQhKzUkEMYszMguKFRLzUhR8MvNSE4sU3ErzksESPAysaYk5xam8UJqbQcbNNcTZQze1KDM5vqAoMzexqDLe1cXU0tLc2MKYgDQALOc2GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Variable Parts: A New Perspective on Proportional Relationships and Linear Functions</title><source>ERIC - Full Text Only (Discovery)</source><creator>Beckmann, Sybilla ; Izsák, Andrew</creator><creatorcontrib>Beckmann, Sybilla ; Izsák, Andrew</creatorcontrib><description>We present a mathematical analysis that distinguishes two quantitative perspectives on ratios and proportional relationships: Multiple Batches and Variable Parts. We argue that (a) existing research on proportional relationships has addressed Multiple Batches but has largely overlooked Variable Parts, (b) Multiple Batches makes the co-variation aspect of proportional relationships more explicit, while Variable Parts makes the fixed multiplicative relationship between two quantities more explicit, (c) the distinction between Multiple Batches and Variable Parts is orthogonal to the within-measure-space versus between-measure-space ratio distinction, and (d) Variable Parts affords promising new approaches for addressing linear relationships. [For the complete proceedings, see ED597799.]</description><language>eng</language><publisher>North American Chapter of the International Group for the Psychology of Mathematics Education</publisher><subject>Algebra ; Mathematical Concepts ; Mathematics</subject><ispartof>North American Chapter of the International Group for the Psychology of Mathematics Education, 2014</ispartof><tpages>8</tpages><format>8</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,690,780,885,4490</link.rule.ids><linktorsrc>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=ED599738$$EView_record_in_ERIC_Clearinghouse_on_Information_&_Technology$$FView_record_in_$$GERIC_Clearinghouse_on_Information_&_Technology$$Hfree_for_read</linktorsrc><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=ED599738$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, Sybilla</creatorcontrib><creatorcontrib>Izsák, Andrew</creatorcontrib><title>Variable Parts: A New Perspective on Proportional Relationships and Linear Functions</title><title>North American Chapter of the International Group for the Psychology of Mathematics Education</title><description>We present a mathematical analysis that distinguishes two quantitative perspectives on ratios and proportional relationships: Multiple Batches and Variable Parts. We argue that (a) existing research on proportional relationships has addressed Multiple Batches but has largely overlooked Variable Parts, (b) Multiple Batches makes the co-variation aspect of proportional relationships more explicit, while Variable Parts makes the fixed multiplicative relationship between two quantities more explicit, (c) the distinction between Multiple Batches and Variable Parts is orthogonal to the within-measure-space versus between-measure-space ratio distinction, and (d) Variable Parts affords promising new approaches for addressing linear relationships. [For the complete proceedings, see ED597799.]</description><subject>Algebra</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2014</creationdate><recordtype>report</recordtype><sourceid>GA5</sourceid><recordid>eNrjZAgJSyzKTEzKSVUISCwqKbZScFTwSy1XCEgtKi5ITS7JLEtVyM9TCCjKL8gvKsnMz0vMUQhKzUkEMYszMguKFRLzUhR8MvNSE4sU3ErzksESPAysaYk5xam8UJqbQcbNNcTZQze1KDM5vqAoMzexqDLe1cXU0tLc2MKYgDQALOc2GA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Beckmann, Sybilla</creator><creator>Izsák, Andrew</creator><general>North American Chapter of the International Group for the Psychology of Mathematics Education</general><scope>ERI</scope><scope>GA5</scope></search><sort><creationdate>2014</creationdate><title>Variable Parts: A New Perspective on Proportional Relationships and Linear Functions</title><author>Beckmann, Sybilla ; Izsák, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-eric_primary_ED5997383</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, Sybilla</creatorcontrib><creatorcontrib>Izsák, Andrew</creatorcontrib><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beckmann, Sybilla</au><au>Izsák, Andrew</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><ericid>ED599738</ericid><atitle>Variable Parts: A New Perspective on Proportional Relationships and Linear Functions</atitle><jtitle>North American Chapter of the International Group for the Psychology of Mathematics Education</jtitle><date>2014</date><risdate>2014</risdate><abstract>We present a mathematical analysis that distinguishes two quantitative perspectives on ratios and proportional relationships: Multiple Batches and Variable Parts. We argue that (a) existing research on proportional relationships has addressed Multiple Batches but has largely overlooked Variable Parts, (b) Multiple Batches makes the co-variation aspect of proportional relationships more explicit, while Variable Parts makes the fixed multiplicative relationship between two quantities more explicit, (c) the distinction between Multiple Batches and Variable Parts is orthogonal to the within-measure-space versus between-measure-space ratio distinction, and (d) Variable Parts affords promising new approaches for addressing linear relationships. [For the complete proceedings, see ED597799.]</abstract><pub>North American Chapter of the International Group for the Psychology of Mathematics Education</pub><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | North American Chapter of the International Group for the Psychology of Mathematics Education, 2014 |
issn | |
language | eng |
recordid | cdi_eric_primary_ED599738 |
source | ERIC - Full Text Only (Discovery) |
subjects | Algebra Mathematical Concepts Mathematics |
title | Variable Parts: A New Perspective on Proportional Relationships and Linear Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_GA5&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=Variable%20Parts:%20A%20New%20Perspective%20on%20Proportional%20Relationships%20and%20Linear%20Functions&rft.jtitle=North%20American%20Chapter%20of%20the%20International%20Group%20for%20the%20Psychology%20of%20Mathematics%20Education&rft.au=Beckmann,%20Sybilla&rft.date=2014&rft_id=info:doi/&rft_dat=%3Ceric_GA5%3EED599738%3C/eric_GA5%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=ED599738&rfr_iscdi=true |