Multilevel multidimensional item response model with a multilevel latent covariate
In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐t...
Gespeichert in:
Veröffentlicht in: | British journal of mathematical & statistical psychology 2015-11, Vol.68 (3), p.410-433 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 3 |
container_start_page | 410 |
container_title | British journal of mathematical & statistical psychology |
container_volume | 68 |
creator | Cho, Sun-Joo Bottge, Brian |
description | In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain. |
doi_str_mv | 10.1111/bmsp.12051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_ED578181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>ED578181</ericid><sourcerecordid>3838135131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</originalsourceid><addsrcrecordid>eNp9kclLxTAQxoMo-lwunkUKXkSoZpI26Tu6L7jhgt5C2k4x2uWZtC7_vanVd_BgLplhft838A0hq0C3wb-dtHKTbWA0hhkyYjSKwoSDnCUjSqkMAShbIIvOPVMKLKZiniywOAHJIj4iNxdd2ZoS37AMqr7MTYW1M02ty8C0WAUW3aSpHQZVk3vo3bRPgR7YQVbqFus2yJo3bY2vl8lcoUuHKz__Erk_OrzbPwnPr45P93fPwywCAaFMk0yPJRunWSHAN6koNGjkcc4zLhgAZwJQF5T7SSIKTCjlRRwBTfNijHyJrA2-aE2mJtZU2n6qw4NYJpCAH28O44ltXjt0raqMy7AsdY1N5xRIGEd-C408uvEHfW466xPoKcaiWAjoDbcGKrONcxaL6U6gqj-E6g-hvg_h4fUfyy6tMJ-iv8l7AAbg3cf4-Y-V2ru4vf41DQeNcS1-TDXavighuYzVw-WxupUHsHf2CErwL7-WoU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722456611</pqid></control><display><type>article</type><title>Multilevel multidimensional item response model with a multilevel latent covariate</title><source>MEDLINE</source><source>ERIC - Full Text Only (Discovery)</source><source>Access via Wiley Online Library</source><creator>Cho, Sun-Joo ; Bottge, Brian</creator><creatorcontrib>Cho, Sun-Joo ; Bottge, Brian</creatorcontrib><description>In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12051</identifier><identifier>PMID: 25817243</identifier><identifier>CODEN: BJMSAK</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Clinical trials ; Comparative Analysis ; Computation ; Computer Simulation ; Data Interpretation, Statistical ; Educational Measurement - methods ; Error of Measurement ; Estimation bias ; Fractions ; Hierarchical Linear Modeling ; Intervention ; Item Response Theory ; Mathematics Tests ; measurement error ; Measurement errors ; Middle School Students ; Models, Statistical ; multidimensional item response model ; Multifactor Dimensionality Reduction ; multilevel model ; Outcome Assessment (Health Care) - methods ; Pretests Posttests ; Program Effectiveness ; Randomized Controlled Trials as Topic ; Regression Analysis ; Reproducibility of Results ; Scores ; Sensitivity and Specificity ; Statistical Analysis ; Statistical inference</subject><ispartof>British journal of mathematical & statistical psychology, 2015-11, Vol.68 (3), p.410-433</ispartof><rights>2015 The British Psychological Society</rights><rights>2015 The British Psychological Society.</rights><rights>Copyright British Psychological Society Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</citedby><cites>FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12051$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12051$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,690,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25817243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=ED578181$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Sun-Joo</creatorcontrib><creatorcontrib>Bottge, Brian</creatorcontrib><title>Multilevel multidimensional item response model with a multilevel latent covariate</title><title>British journal of mathematical & statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.</description><subject>Algorithms</subject><subject>Clinical trials</subject><subject>Comparative Analysis</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Educational Measurement - methods</subject><subject>Error of Measurement</subject><subject>Estimation bias</subject><subject>Fractions</subject><subject>Hierarchical Linear Modeling</subject><subject>Intervention</subject><subject>Item Response Theory</subject><subject>Mathematics Tests</subject><subject>measurement error</subject><subject>Measurement errors</subject><subject>Middle School Students</subject><subject>Models, Statistical</subject><subject>multidimensional item response model</subject><subject>Multifactor Dimensionality Reduction</subject><subject>multilevel model</subject><subject>Outcome Assessment (Health Care) - methods</subject><subject>Pretests Posttests</subject><subject>Program Effectiveness</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Scores</subject><subject>Sensitivity and Specificity</subject><subject>Statistical Analysis</subject><subject>Statistical inference</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>GA5</sourceid><recordid>eNp9kclLxTAQxoMo-lwunkUKXkSoZpI26Tu6L7jhgt5C2k4x2uWZtC7_vanVd_BgLplhft838A0hq0C3wb-dtHKTbWA0hhkyYjSKwoSDnCUjSqkMAShbIIvOPVMKLKZiniywOAHJIj4iNxdd2ZoS37AMqr7MTYW1M02ty8C0WAUW3aSpHQZVk3vo3bRPgR7YQVbqFus2yJo3bY2vl8lcoUuHKz__Erk_OrzbPwnPr45P93fPwywCAaFMk0yPJRunWSHAN6koNGjkcc4zLhgAZwJQF5T7SSIKTCjlRRwBTfNijHyJrA2-aE2mJtZU2n6qw4NYJpCAH28O44ltXjt0raqMy7AsdY1N5xRIGEd-C408uvEHfW466xPoKcaiWAjoDbcGKrONcxaL6U6gqj-E6g-hvg_h4fUfyy6tMJ-iv8l7AAbg3cf4-Y-V2ru4vf41DQeNcS1-TDXavighuYzVw-WxupUHsHf2CErwL7-WoU4</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Cho, Sun-Joo</creator><creator>Bottge, Brian</creator><general>Blackwell Publishing Ltd</general><general>British Psychological Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>ERI</scope><scope>GA5</scope></search><sort><creationdate>201511</creationdate><title>Multilevel multidimensional item response model with a multilevel latent covariate</title><author>Cho, Sun-Joo ; Bottge, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Clinical trials</topic><topic>Comparative Analysis</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Educational Measurement - methods</topic><topic>Error of Measurement</topic><topic>Estimation bias</topic><topic>Fractions</topic><topic>Hierarchical Linear Modeling</topic><topic>Intervention</topic><topic>Item Response Theory</topic><topic>Mathematics Tests</topic><topic>measurement error</topic><topic>Measurement errors</topic><topic>Middle School Students</topic><topic>Models, Statistical</topic><topic>multidimensional item response model</topic><topic>Multifactor Dimensionality Reduction</topic><topic>multilevel model</topic><topic>Outcome Assessment (Health Care) - methods</topic><topic>Pretests Posttests</topic><topic>Program Effectiveness</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Scores</topic><topic>Sensitivity and Specificity</topic><topic>Statistical Analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Sun-Joo</creatorcontrib><creatorcontrib>Bottge, Brian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><jtitle>British journal of mathematical & statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Sun-Joo</au><au>Bottge, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>ED578181</ericid><atitle>Multilevel multidimensional item response model with a multilevel latent covariate</atitle><jtitle>British journal of mathematical & statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>68</volume><issue>3</issue><spage>410</spage><epage>433</epage><pages>410-433</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><coden>BJMSAK</coden><abstract>In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25817243</pmid><doi>10.1111/bmsp.12051</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1102 |
ispartof | British journal of mathematical & statistical psychology, 2015-11, Vol.68 (3), p.410-433 |
issn | 0007-1102 2044-8317 |
language | eng |
recordid | cdi_eric_primary_ED578181 |
source | MEDLINE; ERIC - Full Text Only (Discovery); Access via Wiley Online Library |
subjects | Algorithms Clinical trials Comparative Analysis Computation Computer Simulation Data Interpretation, Statistical Educational Measurement - methods Error of Measurement Estimation bias Fractions Hierarchical Linear Modeling Intervention Item Response Theory Mathematics Tests measurement error Measurement errors Middle School Students Models, Statistical multidimensional item response model Multifactor Dimensionality Reduction multilevel model Outcome Assessment (Health Care) - methods Pretests Posttests Program Effectiveness Randomized Controlled Trials as Topic Regression Analysis Reproducibility of Results Scores Sensitivity and Specificity Statistical Analysis Statistical inference |
title | Multilevel multidimensional item response model with a multilevel latent covariate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20multidimensional%20item%20response%20model%20with%20a%20multilevel%20latent%20covariate&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Cho,%20Sun-Joo&rft.date=2015-11&rft.volume=68&rft.issue=3&rft.spage=410&rft.epage=433&rft.pages=410-433&rft.issn=0007-1102&rft.eissn=2044-8317&rft.coden=BJMSAK&rft_id=info:doi/10.1111/bmsp.12051&rft_dat=%3Cproquest_eric_%3E3838135131%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722456611&rft_id=info:pmid/25817243&rft_ericid=ED578181&rfr_iscdi=true |