Multilevel multidimensional item response model with a multilevel latent covariate

In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology 2015-11, Vol.68 (3), p.410-433
Hauptverfasser: Cho, Sun-Joo, Bottge, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 3
container_start_page 410
container_title British journal of mathematical & statistical psychology
container_volume 68
creator Cho, Sun-Joo
Bottge, Brian
description In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.
doi_str_mv 10.1111/bmsp.12051
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_eric_primary_ED578181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>ED578181</ericid><sourcerecordid>3838135131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</originalsourceid><addsrcrecordid>eNp9kclLxTAQxoMo-lwunkUKXkSoZpI26Tu6L7jhgt5C2k4x2uWZtC7_vanVd_BgLplhft838A0hq0C3wb-dtHKTbWA0hhkyYjSKwoSDnCUjSqkMAShbIIvOPVMKLKZiniywOAHJIj4iNxdd2ZoS37AMqr7MTYW1M02ty8C0WAUW3aSpHQZVk3vo3bRPgR7YQVbqFus2yJo3bY2vl8lcoUuHKz__Erk_OrzbPwnPr45P93fPwywCAaFMk0yPJRunWSHAN6koNGjkcc4zLhgAZwJQF5T7SSIKTCjlRRwBTfNijHyJrA2-aE2mJtZU2n6qw4NYJpCAH28O44ltXjt0raqMy7AsdY1N5xRIGEd-C408uvEHfW466xPoKcaiWAjoDbcGKrONcxaL6U6gqj-E6g-hvg_h4fUfyy6tMJ-iv8l7AAbg3cf4-Y-V2ru4vf41DQeNcS1-TDXavighuYzVw-WxupUHsHf2CErwL7-WoU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722456611</pqid></control><display><type>article</type><title>Multilevel multidimensional item response model with a multilevel latent covariate</title><source>MEDLINE</source><source>ERIC - Full Text Only (Discovery)</source><source>Access via Wiley Online Library</source><creator>Cho, Sun-Joo ; Bottge, Brian</creator><creatorcontrib>Cho, Sun-Joo ; Bottge, Brian</creatorcontrib><description>In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12051</identifier><identifier>PMID: 25817243</identifier><identifier>CODEN: BJMSAK</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Clinical trials ; Comparative Analysis ; Computation ; Computer Simulation ; Data Interpretation, Statistical ; Educational Measurement - methods ; Error of Measurement ; Estimation bias ; Fractions ; Hierarchical Linear Modeling ; Intervention ; Item Response Theory ; Mathematics Tests ; measurement error ; Measurement errors ; Middle School Students ; Models, Statistical ; multidimensional item response model ; Multifactor Dimensionality Reduction ; multilevel model ; Outcome Assessment (Health Care) - methods ; Pretests Posttests ; Program Effectiveness ; Randomized Controlled Trials as Topic ; Regression Analysis ; Reproducibility of Results ; Scores ; Sensitivity and Specificity ; Statistical Analysis ; Statistical inference</subject><ispartof>British journal of mathematical &amp; statistical psychology, 2015-11, Vol.68 (3), p.410-433</ispartof><rights>2015 The British Psychological Society</rights><rights>2015 The British Psychological Society.</rights><rights>Copyright British Psychological Society Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</citedby><cites>FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12051$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12051$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,690,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25817243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=ED578181$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Sun-Joo</creatorcontrib><creatorcontrib>Bottge, Brian</creatorcontrib><title>Multilevel multidimensional item response model with a multilevel latent covariate</title><title>British journal of mathematical &amp; statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.</description><subject>Algorithms</subject><subject>Clinical trials</subject><subject>Comparative Analysis</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Educational Measurement - methods</subject><subject>Error of Measurement</subject><subject>Estimation bias</subject><subject>Fractions</subject><subject>Hierarchical Linear Modeling</subject><subject>Intervention</subject><subject>Item Response Theory</subject><subject>Mathematics Tests</subject><subject>measurement error</subject><subject>Measurement errors</subject><subject>Middle School Students</subject><subject>Models, Statistical</subject><subject>multidimensional item response model</subject><subject>Multifactor Dimensionality Reduction</subject><subject>multilevel model</subject><subject>Outcome Assessment (Health Care) - methods</subject><subject>Pretests Posttests</subject><subject>Program Effectiveness</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Scores</subject><subject>Sensitivity and Specificity</subject><subject>Statistical Analysis</subject><subject>Statistical inference</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>GA5</sourceid><recordid>eNp9kclLxTAQxoMo-lwunkUKXkSoZpI26Tu6L7jhgt5C2k4x2uWZtC7_vanVd_BgLplhft838A0hq0C3wb-dtHKTbWA0hhkyYjSKwoSDnCUjSqkMAShbIIvOPVMKLKZiniywOAHJIj4iNxdd2ZoS37AMqr7MTYW1M02ty8C0WAUW3aSpHQZVk3vo3bRPgR7YQVbqFus2yJo3bY2vl8lcoUuHKz__Erk_OrzbPwnPr45P93fPwywCAaFMk0yPJRunWSHAN6koNGjkcc4zLhgAZwJQF5T7SSIKTCjlRRwBTfNijHyJrA2-aE2mJtZU2n6qw4NYJpCAH28O44ltXjt0raqMy7AsdY1N5xRIGEd-C408uvEHfW466xPoKcaiWAjoDbcGKrONcxaL6U6gqj-E6g-hvg_h4fUfyy6tMJ-iv8l7AAbg3cf4-Y-V2ru4vf41DQeNcS1-TDXavighuYzVw-WxupUHsHf2CErwL7-WoU4</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Cho, Sun-Joo</creator><creator>Bottge, Brian</creator><general>Blackwell Publishing Ltd</general><general>British Psychological Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>ERI</scope><scope>GA5</scope></search><sort><creationdate>201511</creationdate><title>Multilevel multidimensional item response model with a multilevel latent covariate</title><author>Cho, Sun-Joo ; Bottge, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4161-7b8ca9729bcf61b8cb6fa1ae35d3c362113261eaf03b6f86fe8003f5410bdf9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Clinical trials</topic><topic>Comparative Analysis</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Educational Measurement - methods</topic><topic>Error of Measurement</topic><topic>Estimation bias</topic><topic>Fractions</topic><topic>Hierarchical Linear Modeling</topic><topic>Intervention</topic><topic>Item Response Theory</topic><topic>Mathematics Tests</topic><topic>measurement error</topic><topic>Measurement errors</topic><topic>Middle School Students</topic><topic>Models, Statistical</topic><topic>multidimensional item response model</topic><topic>Multifactor Dimensionality Reduction</topic><topic>multilevel model</topic><topic>Outcome Assessment (Health Care) - methods</topic><topic>Pretests Posttests</topic><topic>Program Effectiveness</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Scores</topic><topic>Sensitivity and Specificity</topic><topic>Statistical Analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Sun-Joo</creatorcontrib><creatorcontrib>Bottge, Brian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>ERIC</collection><collection>ERIC - Full Text Only (Discovery)</collection><jtitle>British journal of mathematical &amp; statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Sun-Joo</au><au>Bottge, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>ED578181</ericid><atitle>Multilevel multidimensional item response model with a multilevel latent covariate</atitle><jtitle>British journal of mathematical &amp; statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>68</volume><issue>3</issue><spage>410</spage><epage>433</epage><pages>410-433</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><coden>BJMSAK</coden><abstract>In a pre‐test–post‐test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre‐test scores and other related covariates while estimating an intervention effect at post‐test. In many applications in education, the total post‐test and pre‐test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25817243</pmid><doi>10.1111/bmsp.12051</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1102
ispartof British journal of mathematical & statistical psychology, 2015-11, Vol.68 (3), p.410-433
issn 0007-1102
2044-8317
language eng
recordid cdi_eric_primary_ED578181
source MEDLINE; ERIC - Full Text Only (Discovery); Access via Wiley Online Library
subjects Algorithms
Clinical trials
Comparative Analysis
Computation
Computer Simulation
Data Interpretation, Statistical
Educational Measurement - methods
Error of Measurement
Estimation bias
Fractions
Hierarchical Linear Modeling
Intervention
Item Response Theory
Mathematics Tests
measurement error
Measurement errors
Middle School Students
Models, Statistical
multidimensional item response model
Multifactor Dimensionality Reduction
multilevel model
Outcome Assessment (Health Care) - methods
Pretests Posttests
Program Effectiveness
Randomized Controlled Trials as Topic
Regression Analysis
Reproducibility of Results
Scores
Sensitivity and Specificity
Statistical Analysis
Statistical inference
title Multilevel multidimensional item response model with a multilevel latent covariate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20multidimensional%20item%20response%20model%20with%20a%20multilevel%20latent%20covariate&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Cho,%20Sun-Joo&rft.date=2015-11&rft.volume=68&rft.issue=3&rft.spage=410&rft.epage=433&rft.pages=410-433&rft.issn=0007-1102&rft.eissn=2044-8317&rft.coden=BJMSAK&rft_id=info:doi/10.1111/bmsp.12051&rft_dat=%3Cproquest_eric_%3E3838135131%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722456611&rft_id=info:pmid/25817243&rft_ericid=ED578181&rfr_iscdi=true