GLASS COATING METHOD AND RESULTING ARTICLE
A continuous, chemical vapor deposition method for producing a coated glass article is disclosed. A glass substrate is advanced continuously, while hot, past first and second treating stations. A non-oxidizing atmosphere is maintained in the vicinity of the first treating station, while an oxidizing...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | EBERHARD R. ALBACH JOHN F. CONOUR RICHARD A. HERRINGTON GERALD A. CALLIES |
description | A continuous, chemical vapor deposition method for producing a coated glass article is disclosed. A glass substrate is advanced continuously, while hot, past first and second treating stations. A non-oxidizing atmosphere is maintained in the vicinity of the first treating station, while an oxidizing atmosphere is maintained in the vicinity of the second station. A non-oxidizing gas which contains a silane, e.g., SiH4, is directed from the first treating station against a surface of the glass to form a silicon coating on that surface. An oxidizing gas which includes a metal compound in the vapor phase is directed from the second station against the silicon-coated surface of the article. The process is controlled so that the silane-containing gas forms a reflective silicon coating on the glass surface, the oxidizing gas which includes a metal compound forms a coating of an oxide of the metal, and oxidation before the article reaches the second treating station forms a silicon oxide layer on the silicon which is of sufficient thickness that the metal oxide layer is substantially free of pinholing. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_ZA867480B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZA867480B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_ZA867480B3</originalsourceid><addsrcrecordid>eNrjZNBy93EMDlZw9ncM8fRzV_B1DfHwd1Fw9HNRCHINDvUBCzoGhXg6-7jyMLCmJeYUp_JCaW4GOTfXEGcP3dSC_PjU4oLE5NS81JL4KEcLM3MTCwMnY4IKAHenI3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GLASS COATING METHOD AND RESULTING ARTICLE</title><source>esp@cenet</source><creator>EBERHARD R. ALBACH ; JOHN F. CONOUR ; RICHARD A. HERRINGTON ; GERALD A. CALLIES</creator><creatorcontrib>EBERHARD R. ALBACH ; JOHN F. CONOUR ; RICHARD A. HERRINGTON ; GERALD A. CALLIES</creatorcontrib><description>A continuous, chemical vapor deposition method for producing a coated glass article is disclosed. A glass substrate is advanced continuously, while hot, past first and second treating stations. A non-oxidizing atmosphere is maintained in the vicinity of the first treating station, while an oxidizing atmosphere is maintained in the vicinity of the second station. A non-oxidizing gas which contains a silane, e.g., SiH4, is directed from the first treating station against a surface of the glass to form a silicon coating on that surface. An oxidizing gas which includes a metal compound in the vapor phase is directed from the second station against the silicon-coated surface of the article. The process is controlled so that the silane-containing gas forms a reflective silicon coating on the glass surface, the oxidizing gas which includes a metal compound forms a coating of an oxide of the metal, and oxidation before the article reaches the second treating station forms a silicon oxide layer on the silicon which is of sufficient thickness that the metal oxide layer is substantially free of pinholing.</description><edition>4</edition><language>eng</language><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL ; CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; GLASS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; JOINING GLASS TO GLASS OR OTHER MATERIALS ; LAYERED PRODUCTS ; LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM ; METALLURGY ; MINERAL OR SLAG WOOL ; PERFORMING OPERATIONS ; PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL ; SPRAYING OR ATOMISING IN GENERAL ; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS ; SURFACE TREATMENT OF GLASS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>1987</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19870527&DB=EPODOC&CC=ZA&NR=867480B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19870527&DB=EPODOC&CC=ZA&NR=867480B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>EBERHARD R. ALBACH</creatorcontrib><creatorcontrib>JOHN F. CONOUR</creatorcontrib><creatorcontrib>RICHARD A. HERRINGTON</creatorcontrib><creatorcontrib>GERALD A. CALLIES</creatorcontrib><title>GLASS COATING METHOD AND RESULTING ARTICLE</title><description>A continuous, chemical vapor deposition method for producing a coated glass article is disclosed. A glass substrate is advanced continuously, while hot, past first and second treating stations. A non-oxidizing atmosphere is maintained in the vicinity of the first treating station, while an oxidizing atmosphere is maintained in the vicinity of the second station. A non-oxidizing gas which contains a silane, e.g., SiH4, is directed from the first treating station against a surface of the glass to form a silicon coating on that surface. An oxidizing gas which includes a metal compound in the vapor phase is directed from the second station against the silicon-coated surface of the article. The process is controlled so that the silane-containing gas forms a reflective silicon coating on the glass surface, the oxidizing gas which includes a metal compound forms a coating of an oxide of the metal, and oxidation before the article reaches the second treating station forms a silicon oxide layer on the silicon which is of sufficient thickness that the metal oxide layer is substantially free of pinholing.</description><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</subject><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>GLASS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>JOINING GLASS TO GLASS OR OTHER MATERIALS</subject><subject>LAYERED PRODUCTS</subject><subject>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</subject><subject>METALLURGY</subject><subject>MINERAL OR SLAG WOOL</subject><subject>PERFORMING OPERATIONS</subject><subject>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</subject><subject>SPRAYING OR ATOMISING IN GENERAL</subject><subject>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</subject><subject>SURFACE TREATMENT OF GLASS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1987</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBy93EMDlZw9ncM8fRzV_B1DfHwd1Fw9HNRCHINDvUBCzoGhXg6-7jyMLCmJeYUp_JCaW4GOTfXEGcP3dSC_PjU4oLE5NS81JL4KEcLM3MTCwMnY4IKAHenI3c</recordid><startdate>19870527</startdate><enddate>19870527</enddate><creator>EBERHARD R. ALBACH</creator><creator>JOHN F. CONOUR</creator><creator>RICHARD A. HERRINGTON</creator><creator>GERALD A. CALLIES</creator><scope>EVB</scope></search><sort><creationdate>19870527</creationdate><title>GLASS COATING METHOD AND RESULTING ARTICLE</title><author>EBERHARD R. ALBACH ; JOHN F. CONOUR ; RICHARD A. HERRINGTON ; GERALD A. CALLIES</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_ZA867480B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1987</creationdate><topic>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</topic><topic>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>GLASS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>JOINING GLASS TO GLASS OR OTHER MATERIALS</topic><topic>LAYERED PRODUCTS</topic><topic>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</topic><topic>METALLURGY</topic><topic>MINERAL OR SLAG WOOL</topic><topic>PERFORMING OPERATIONS</topic><topic>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</topic><topic>SPRAYING OR ATOMISING IN GENERAL</topic><topic>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</topic><topic>SURFACE TREATMENT OF GLASS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>EBERHARD R. ALBACH</creatorcontrib><creatorcontrib>JOHN F. CONOUR</creatorcontrib><creatorcontrib>RICHARD A. HERRINGTON</creatorcontrib><creatorcontrib>GERALD A. CALLIES</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>EBERHARD R. ALBACH</au><au>JOHN F. CONOUR</au><au>RICHARD A. HERRINGTON</au><au>GERALD A. CALLIES</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GLASS COATING METHOD AND RESULTING ARTICLE</title><date>1987-05-27</date><risdate>1987</risdate><abstract>A continuous, chemical vapor deposition method for producing a coated glass article is disclosed. A glass substrate is advanced continuously, while hot, past first and second treating stations. A non-oxidizing atmosphere is maintained in the vicinity of the first treating station, while an oxidizing atmosphere is maintained in the vicinity of the second station. A non-oxidizing gas which contains a silane, e.g., SiH4, is directed from the first treating station against a surface of the glass to form a silicon coating on that surface. An oxidizing gas which includes a metal compound in the vapor phase is directed from the second station against the silicon-coated surface of the article. The process is controlled so that the silane-containing gas forms a reflective silicon coating on the glass surface, the oxidizing gas which includes a metal compound forms a coating of an oxide of the metal, and oxidation before the article reaches the second treating station forms a silicon oxide layer on the silicon which is of sufficient thickness that the metal oxide layer is substantially free of pinholing.</abstract><edition>4</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_ZA867480B |
source | esp@cenet |
subjects | APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL GLASS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL JOINING GLASS TO GLASS OR OTHER MATERIALS LAYERED PRODUCTS LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM METALLURGY MINERAL OR SLAG WOOL PERFORMING OPERATIONS PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL SPRAYING OR ATOMISING IN GENERAL SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS SURFACE TREATMENT OF GLASS SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING |
title | GLASS COATING METHOD AND RESULTING ARTICLE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=EBERHARD%20R.%20ALBACH&rft.date=1987-05-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EZA867480B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |