GIS PARTIAL DISCHARGE DIAGNOSING METHOD, MODEL TRAINING METHOD, DEVICE AND SYSTEM

A GIS partial discharge diagnosing method, a model training method, a device and a system are disclosed. Sensor modules are in communication with each other, so that sensor network position distribution data of each sensor module in a wireless transmission network can be determined. In a training pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG, Hua, HUANG, haojian, MIAO, Chusheng, LIN, Hairong, WU, Jianming, FANG, Laijin, HAN, Maowen, Yi, Xiaobo, YANG, Kai
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG, Hua
HUANG, haojian
MIAO, Chusheng
LIN, Hairong
WU, Jianming
FANG, Laijin
HAN, Maowen
Yi, Xiaobo
YANG, Kai
description A GIS partial discharge diagnosing method, a model training method, a device and a system are disclosed. Sensor modules are in communication with each other, so that sensor network position distribution data of each sensor module in a wireless transmission network can be determined. In a training process of a partial discharge diagnosing model, a spatial-temporal feature of the partial discharge is introduced, so that the trained partial discharge diagnosing model is adaptive to different GIS equipment and different sensors layout solutions, and has better model universality and applicability, thus greatly saving a training time of the model and expediting the deployment of the partial discharge diagnosing model. Moreover, the model trained in the present disclosure accounts for the relationship between the position where partial discharge occurs and the sensor network position distribution. This allows the trained partial discharge diagnosing model of the present disclosure to eliminate interference from discharge signals occurring outside the GIS, enhancing the accuracy of partial discharge type identification.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_ZA202309798B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZA202309798B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_ZA202309798B3</originalsourceid><addsrcrecordid>eNrjZAh09wxWCHAMCvF09FFw8Qx29nAMcncFshzd_fyDPf3cFXxdQzz8XXQUfP1dXH0UQoIcPf2QhV1cwzydXRUc_VwUgiODQ1x9eRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfJSjkYGRsYGluaWFkzExagBw6y8K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GIS PARTIAL DISCHARGE DIAGNOSING METHOD, MODEL TRAINING METHOD, DEVICE AND SYSTEM</title><source>esp@cenet</source><creator>ZHANG, Hua ; HUANG, haojian ; MIAO, Chusheng ; LIN, Hairong ; WU, Jianming ; FANG, Laijin ; HAN, Maowen ; Yi, Xiaobo ; YANG, Kai</creator><creatorcontrib>ZHANG, Hua ; HUANG, haojian ; MIAO, Chusheng ; LIN, Hairong ; WU, Jianming ; FANG, Laijin ; HAN, Maowen ; Yi, Xiaobo ; YANG, Kai</creatorcontrib><description>A GIS partial discharge diagnosing method, a model training method, a device and a system are disclosed. Sensor modules are in communication with each other, so that sensor network position distribution data of each sensor module in a wireless transmission network can be determined. In a training process of a partial discharge diagnosing model, a spatial-temporal feature of the partial discharge is introduced, so that the trained partial discharge diagnosing model is adaptive to different GIS equipment and different sensors layout solutions, and has better model universality and applicability, thus greatly saving a training time of the model and expediting the deployment of the partial discharge diagnosing model. Moreover, the model trained in the present disclosure accounts for the relationship between the position where partial discharge occurs and the sensor network position distribution. This allows the trained partial discharge diagnosing model of the present disclosure to eliminate interference from discharge signals occurring outside the GIS, enhancing the accuracy of partial discharge type identification.</description><language>eng</language><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240530&amp;DB=EPODOC&amp;CC=ZA&amp;NR=202309798B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76292</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240530&amp;DB=EPODOC&amp;CC=ZA&amp;NR=202309798B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG, Hua</creatorcontrib><creatorcontrib>HUANG, haojian</creatorcontrib><creatorcontrib>MIAO, Chusheng</creatorcontrib><creatorcontrib>LIN, Hairong</creatorcontrib><creatorcontrib>WU, Jianming</creatorcontrib><creatorcontrib>FANG, Laijin</creatorcontrib><creatorcontrib>HAN, Maowen</creatorcontrib><creatorcontrib>Yi, Xiaobo</creatorcontrib><creatorcontrib>YANG, Kai</creatorcontrib><title>GIS PARTIAL DISCHARGE DIAGNOSING METHOD, MODEL TRAINING METHOD, DEVICE AND SYSTEM</title><description>A GIS partial discharge diagnosing method, a model training method, a device and a system are disclosed. Sensor modules are in communication with each other, so that sensor network position distribution data of each sensor module in a wireless transmission network can be determined. In a training process of a partial discharge diagnosing model, a spatial-temporal feature of the partial discharge is introduced, so that the trained partial discharge diagnosing model is adaptive to different GIS equipment and different sensors layout solutions, and has better model universality and applicability, thus greatly saving a training time of the model and expediting the deployment of the partial discharge diagnosing model. Moreover, the model trained in the present disclosure accounts for the relationship between the position where partial discharge occurs and the sensor network position distribution. This allows the trained partial discharge diagnosing model of the present disclosure to eliminate interference from discharge signals occurring outside the GIS, enhancing the accuracy of partial discharge type identification.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh09wxWCHAMCvF09FFw8Qx29nAMcncFshzd_fyDPf3cFXxdQzz8XXQUfP1dXH0UQoIcPf2QhV1cwzydXRUc_VwUgiODQ1x9eRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfJSjkYGRsYGluaWFkzExagBw6y8K</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>ZHANG, Hua</creator><creator>HUANG, haojian</creator><creator>MIAO, Chusheng</creator><creator>LIN, Hairong</creator><creator>WU, Jianming</creator><creator>FANG, Laijin</creator><creator>HAN, Maowen</creator><creator>Yi, Xiaobo</creator><creator>YANG, Kai</creator><scope>EVB</scope></search><sort><creationdate>20240530</creationdate><title>GIS PARTIAL DISCHARGE DIAGNOSING METHOD, MODEL TRAINING METHOD, DEVICE AND SYSTEM</title><author>ZHANG, Hua ; HUANG, haojian ; MIAO, Chusheng ; LIN, Hairong ; WU, Jianming ; FANG, Laijin ; HAN, Maowen ; Yi, Xiaobo ; YANG, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_ZA202309798B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Hua</creatorcontrib><creatorcontrib>HUANG, haojian</creatorcontrib><creatorcontrib>MIAO, Chusheng</creatorcontrib><creatorcontrib>LIN, Hairong</creatorcontrib><creatorcontrib>WU, Jianming</creatorcontrib><creatorcontrib>FANG, Laijin</creatorcontrib><creatorcontrib>HAN, Maowen</creatorcontrib><creatorcontrib>Yi, Xiaobo</creatorcontrib><creatorcontrib>YANG, Kai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG, Hua</au><au>HUANG, haojian</au><au>MIAO, Chusheng</au><au>LIN, Hairong</au><au>WU, Jianming</au><au>FANG, Laijin</au><au>HAN, Maowen</au><au>Yi, Xiaobo</au><au>YANG, Kai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GIS PARTIAL DISCHARGE DIAGNOSING METHOD, MODEL TRAINING METHOD, DEVICE AND SYSTEM</title><date>2024-05-30</date><risdate>2024</risdate><abstract>A GIS partial discharge diagnosing method, a model training method, a device and a system are disclosed. Sensor modules are in communication with each other, so that sensor network position distribution data of each sensor module in a wireless transmission network can be determined. In a training process of a partial discharge diagnosing model, a spatial-temporal feature of the partial discharge is introduced, so that the trained partial discharge diagnosing model is adaptive to different GIS equipment and different sensors layout solutions, and has better model universality and applicability, thus greatly saving a training time of the model and expediting the deployment of the partial discharge diagnosing model. Moreover, the model trained in the present disclosure accounts for the relationship between the position where partial discharge occurs and the sensor network position distribution. This allows the trained partial discharge diagnosing model of the present disclosure to eliminate interference from discharge signals occurring outside the GIS, enhancing the accuracy of partial discharge type identification.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_ZA202309798B
source esp@cenet
title GIS PARTIAL DISCHARGE DIAGNOSING METHOD, MODEL TRAINING METHOD, DEVICE AND SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG,%20Hua&rft.date=2024-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EZA202309798B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true