A SYSTEM AND METHOD FOR ANOMALY DETECTION BASED ON DIFFERENTIAL OF SENTIMENT SCORE
A System (100) and a method (200) for anomaly detection based on differential of sentiment score, comprises of: a user interface unit (102) for accessing a social media account upon successful authentication of a user and selecting a specific topic for anomaly detection; a text extraction unit (104)...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Janhavi Lele Dr. Vinayak Bharadi Dr. Kaushal Prasad Shashank Tolye Antara Phadnis Aakanksha Birje Asawari Sawant Dr. Bhushankumar Nemade Dr. Sujata Alegavi Pravin Jangid |
description | A System (100) and a method (200) for anomaly detection based on differential of sentiment score, comprises of: a user interface unit (102) for accessing a social media account upon successful authentication of a user and selecting a specific topic for anomaly detection; a text extraction unit (104) for collecting a plurality of data to extract text content from each of the collected plurality of data; a sentiment processing unit (106) for processing the collected data to calculate a sentiment score of each feed based on a plurality of parameters and stored in a database (108); a classification unit (110) for classifying the processed data into positive, negative and neutral percentage of posts; a calculation unit (112) for calculating a differential of sentiment score based on historical data stored in the database; and an anomaly detection unit (114) for detecting anomaly in the differential of the sentiment score. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_ZA202306637B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZA202306637B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_ZA202306637B3</originalsourceid><addsrcrecordid>eNqNikEKwjAQRbNxIeodxgMIpYG6niYTGmgykMymbkopcSVaqPfHCh7Azfvvw9urhJCHLBQAo4VA0rEFx2m7HLAfwJKQEc8RWsxkYRPrnaNEUTz2wA7yV8MGyIYTHdXuPj3WcvrtQZ0diekuZXmNZV2muTzLe7xhXdW6ahp9bfU_zQedGi9L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A SYSTEM AND METHOD FOR ANOMALY DETECTION BASED ON DIFFERENTIAL OF SENTIMENT SCORE</title><source>esp@cenet</source><creator>Janhavi Lele ; Dr. Vinayak Bharadi ; Dr. Kaushal Prasad ; Shashank Tolye ; Antara Phadnis ; Aakanksha Birje ; Asawari Sawant ; Dr. Bhushankumar Nemade ; Dr. Sujata Alegavi ; Pravin Jangid</creator><creatorcontrib>Janhavi Lele ; Dr. Vinayak Bharadi ; Dr. Kaushal Prasad ; Shashank Tolye ; Antara Phadnis ; Aakanksha Birje ; Asawari Sawant ; Dr. Bhushankumar Nemade ; Dr. Sujata Alegavi ; Pravin Jangid</creatorcontrib><description>A System (100) and a method (200) for anomaly detection based on differential of sentiment score, comprises of: a user interface unit (102) for accessing a social media account upon successful authentication of a user and selecting a specific topic for anomaly detection; a text extraction unit (104) for collecting a plurality of data to extract text content from each of the collected plurality of data; a sentiment processing unit (106) for processing the collected data to calculate a sentiment score of each feed based on a plurality of parameters and stored in a database (108); a classification unit (110) for classifying the processed data into positive, negative and neutral percentage of posts; a calculation unit (112) for calculating a differential of sentiment score based on historical data stored in the database; and an anomaly detection unit (114) for detecting anomaly in the differential of the sentiment score.</description><language>eng</language><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240131&DB=EPODOC&CC=ZA&NR=202306637B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240131&DB=EPODOC&CC=ZA&NR=202306637B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Janhavi Lele</creatorcontrib><creatorcontrib>Dr. Vinayak Bharadi</creatorcontrib><creatorcontrib>Dr. Kaushal Prasad</creatorcontrib><creatorcontrib>Shashank Tolye</creatorcontrib><creatorcontrib>Antara Phadnis</creatorcontrib><creatorcontrib>Aakanksha Birje</creatorcontrib><creatorcontrib>Asawari Sawant</creatorcontrib><creatorcontrib>Dr. Bhushankumar Nemade</creatorcontrib><creatorcontrib>Dr. Sujata Alegavi</creatorcontrib><creatorcontrib>Pravin Jangid</creatorcontrib><title>A SYSTEM AND METHOD FOR ANOMALY DETECTION BASED ON DIFFERENTIAL OF SENTIMENT SCORE</title><description>A System (100) and a method (200) for anomaly detection based on differential of sentiment score, comprises of: a user interface unit (102) for accessing a social media account upon successful authentication of a user and selecting a specific topic for anomaly detection; a text extraction unit (104) for collecting a plurality of data to extract text content from each of the collected plurality of data; a sentiment processing unit (106) for processing the collected data to calculate a sentiment score of each feed based on a plurality of parameters and stored in a database (108); a classification unit (110) for classifying the processed data into positive, negative and neutral percentage of posts; a calculation unit (112) for calculating a differential of sentiment score based on historical data stored in the database; and an anomaly detection unit (114) for detecting anomaly in the differential of the sentiment score.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQRbNxIeodxgMIpYG6niYTGmgykMymbkopcSVaqPfHCh7Azfvvw9urhJCHLBQAo4VA0rEFx2m7HLAfwJKQEc8RWsxkYRPrnaNEUTz2wA7yV8MGyIYTHdXuPj3WcvrtQZ0diekuZXmNZV2muTzLe7xhXdW6ahp9bfU_zQedGi9L</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Janhavi Lele</creator><creator>Dr. Vinayak Bharadi</creator><creator>Dr. Kaushal Prasad</creator><creator>Shashank Tolye</creator><creator>Antara Phadnis</creator><creator>Aakanksha Birje</creator><creator>Asawari Sawant</creator><creator>Dr. Bhushankumar Nemade</creator><creator>Dr. Sujata Alegavi</creator><creator>Pravin Jangid</creator><scope>EVB</scope></search><sort><creationdate>20240131</creationdate><title>A SYSTEM AND METHOD FOR ANOMALY DETECTION BASED ON DIFFERENTIAL OF SENTIMENT SCORE</title><author>Janhavi Lele ; Dr. Vinayak Bharadi ; Dr. Kaushal Prasad ; Shashank Tolye ; Antara Phadnis ; Aakanksha Birje ; Asawari Sawant ; Dr. Bhushankumar Nemade ; Dr. Sujata Alegavi ; Pravin Jangid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_ZA202306637B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Janhavi Lele</creatorcontrib><creatorcontrib>Dr. Vinayak Bharadi</creatorcontrib><creatorcontrib>Dr. Kaushal Prasad</creatorcontrib><creatorcontrib>Shashank Tolye</creatorcontrib><creatorcontrib>Antara Phadnis</creatorcontrib><creatorcontrib>Aakanksha Birje</creatorcontrib><creatorcontrib>Asawari Sawant</creatorcontrib><creatorcontrib>Dr. Bhushankumar Nemade</creatorcontrib><creatorcontrib>Dr. Sujata Alegavi</creatorcontrib><creatorcontrib>Pravin Jangid</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Janhavi Lele</au><au>Dr. Vinayak Bharadi</au><au>Dr. Kaushal Prasad</au><au>Shashank Tolye</au><au>Antara Phadnis</au><au>Aakanksha Birje</au><au>Asawari Sawant</au><au>Dr. Bhushankumar Nemade</au><au>Dr. Sujata Alegavi</au><au>Pravin Jangid</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A SYSTEM AND METHOD FOR ANOMALY DETECTION BASED ON DIFFERENTIAL OF SENTIMENT SCORE</title><date>2024-01-31</date><risdate>2024</risdate><abstract>A System (100) and a method (200) for anomaly detection based on differential of sentiment score, comprises of: a user interface unit (102) for accessing a social media account upon successful authentication of a user and selecting a specific topic for anomaly detection; a text extraction unit (104) for collecting a plurality of data to extract text content from each of the collected plurality of data; a sentiment processing unit (106) for processing the collected data to calculate a sentiment score of each feed based on a plurality of parameters and stored in a database (108); a classification unit (110) for classifying the processed data into positive, negative and neutral percentage of posts; a calculation unit (112) for calculating a differential of sentiment score based on historical data stored in the database; and an anomaly detection unit (114) for detecting anomaly in the differential of the sentiment score.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_ZA202306637B |
source | esp@cenet |
title | A SYSTEM AND METHOD FOR ANOMALY DETECTION BASED ON DIFFERENTIAL OF SENTIMENT SCORE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Janhavi%20Lele&rft.date=2024-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EZA202306637B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |