TRAINING A MACHINE LEARNING SYSTEM FOR TRANSACTION DATA PROCESSING
A method of training a supervised machine learning system to detect anomalies within transaction data is described. The method includes obtaining a training set of data samples; assigning a label indicating an absence of an anomaly to unlabelled data samples in the training set; partitioning the dat...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BARNS-GRAHAM, Alec SUTTON, David WONG, Kenny PEREZ, Iker |
description | A method of training a supervised machine learning system to detect anomalies within transaction data is described. The method includes obtaining a training set of data samples; assigning a label indicating an absence of an anomaly to unlabelled data samples in the training set; partitioning the data of the data samples in the training set into two feature sets, a first feature set representing observable features and a second feature set representing context features; generating synthetic data samples by combining features from the two feature sets that respectively relate to two different uniquely identifiable entities; assigning a label indicating a presence of an anomaly to the synthetic data samples; augmenting the training set with the synthetic data samples; and training a supervised machine learning system with the augmented training set and the assigned labels. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_ZA202203620B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZA202203620B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_ZA202203620B3</originalsourceid><addsrcrecordid>eNrjZHAKCXL09PP0c1dwVPB1dPbw9HNV8HF1DAILBUcGh7j6Krj5BykAlfkFOzqHePr7Kbg4hjgqBAT5O7sGBwOV8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-ChHIwMjIwNjMyMDJ2Ni1AAA-5crLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINING A MACHINE LEARNING SYSTEM FOR TRANSACTION DATA PROCESSING</title><source>esp@cenet</source><creator>BARNS-GRAHAM, Alec ; SUTTON, David ; WONG, Kenny ; PEREZ, Iker</creator><creatorcontrib>BARNS-GRAHAM, Alec ; SUTTON, David ; WONG, Kenny ; PEREZ, Iker</creatorcontrib><description>A method of training a supervised machine learning system to detect anomalies within transaction data is described. The method includes obtaining a training set of data samples; assigning a label indicating an absence of an anomaly to unlabelled data samples in the training set; partitioning the data of the data samples in the training set into two feature sets, a first feature set representing observable features and a second feature set representing context features; generating synthetic data samples by combining features from the two feature sets that respectively relate to two different uniquely identifiable entities; assigning a label indicating a presence of an anomaly to the synthetic data samples; augmenting the training set with the synthetic data samples; and training a supervised machine learning system with the augmented training set and the assigned labels.</description><language>eng</language><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240828&DB=EPODOC&CC=ZA&NR=202203620B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240828&DB=EPODOC&CC=ZA&NR=202203620B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BARNS-GRAHAM, Alec</creatorcontrib><creatorcontrib>SUTTON, David</creatorcontrib><creatorcontrib>WONG, Kenny</creatorcontrib><creatorcontrib>PEREZ, Iker</creatorcontrib><title>TRAINING A MACHINE LEARNING SYSTEM FOR TRANSACTION DATA PROCESSING</title><description>A method of training a supervised machine learning system to detect anomalies within transaction data is described. The method includes obtaining a training set of data samples; assigning a label indicating an absence of an anomaly to unlabelled data samples in the training set; partitioning the data of the data samples in the training set into two feature sets, a first feature set representing observable features and a second feature set representing context features; generating synthetic data samples by combining features from the two feature sets that respectively relate to two different uniquely identifiable entities; assigning a label indicating a presence of an anomaly to the synthetic data samples; augmenting the training set with the synthetic data samples; and training a supervised machine learning system with the augmented training set and the assigned labels.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAKCXL09PP0c1dwVPB1dPbw9HNV8HF1DAILBUcGh7j6Krj5BykAlfkFOzqHePr7Kbg4hjgqBAT5O7sGBwOV8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-ChHIwMjIwNjMyMDJ2Ni1AAA-5crLA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>BARNS-GRAHAM, Alec</creator><creator>SUTTON, David</creator><creator>WONG, Kenny</creator><creator>PEREZ, Iker</creator><scope>EVB</scope></search><sort><creationdate>20240828</creationdate><title>TRAINING A MACHINE LEARNING SYSTEM FOR TRANSACTION DATA PROCESSING</title><author>BARNS-GRAHAM, Alec ; SUTTON, David ; WONG, Kenny ; PEREZ, Iker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_ZA202203620B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>BARNS-GRAHAM, Alec</creatorcontrib><creatorcontrib>SUTTON, David</creatorcontrib><creatorcontrib>WONG, Kenny</creatorcontrib><creatorcontrib>PEREZ, Iker</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BARNS-GRAHAM, Alec</au><au>SUTTON, David</au><au>WONG, Kenny</au><au>PEREZ, Iker</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINING A MACHINE LEARNING SYSTEM FOR TRANSACTION DATA PROCESSING</title><date>2024-08-28</date><risdate>2024</risdate><abstract>A method of training a supervised machine learning system to detect anomalies within transaction data is described. The method includes obtaining a training set of data samples; assigning a label indicating an absence of an anomaly to unlabelled data samples in the training set; partitioning the data of the data samples in the training set into two feature sets, a first feature set representing observable features and a second feature set representing context features; generating synthetic data samples by combining features from the two feature sets that respectively relate to two different uniquely identifiable entities; assigning a label indicating a presence of an anomaly to the synthetic data samples; augmenting the training set with the synthetic data samples; and training a supervised machine learning system with the augmented training set and the assigned labels.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_ZA202203620B |
source | esp@cenet |
title | TRAINING A MACHINE LEARNING SYSTEM FOR TRANSACTION DATA PROCESSING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BARNS-GRAHAM,%20Alec&rft.date=2024-08-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EZA202203620B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |