ULTRASONIC DETECTION METHOD AND SYSTEM FOR PARTIAL DISCHARGE OF POWER DISTRIBUTION NETWORK

The present invention relates to a deep learning-based power distribution network partial discharge ultrasonic test method and system. The method comprises: training a neural network model; converting an ultrasonic signal of a partial discharge defect of a power distribution network device to be tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG, Jin, ZHANG, Guangdong, HE, Hongtai, XIONG, Peng, LIU, Kang, HE, Weifeng, ZHANG, Fagang, BAI, Wenyuan, XUE, Ling, ZHANG, Yugang, QIN, Yuanxun, ZHANG, Taoyun, HUANG, Zhiyong, GUI, Feifei
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG, Jin
ZHANG, Guangdong
HE, Hongtai
XIONG, Peng
LIU, Kang
HE, Weifeng
ZHANG, Fagang
BAI, Wenyuan
XUE, Ling
ZHANG, Yugang
QIN, Yuanxun
ZHANG, Taoyun
HUANG, Zhiyong
GUI, Feifei
description The present invention relates to a deep learning-based power distribution network partial discharge ultrasonic test method and system. The method comprises: training a neural network model; converting an ultrasonic signal of a partial discharge defect of a power distribution network device to be tested into Mel Frequency Cepstral data; inputting the Mel Frequency Cepstral data into a periodic neural network layer for learning to obtain a first feature; inputting an image of the partial discharge defect of the power distribution network device to be tested into a convolutional neural network layer for learning to obtain a second feature; linearly stitching the first feature and the second feature to obtain a third feature; and inputting the third feature into a multi-layer full connection layer to obtain a test result of the power distribution network device to be tested. Compared with the existing manual tests, the test method and system provided in the present invention are more efficient and accurate.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_ZA202104616B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ZA202104616B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_ZA202104616B3</originalsourceid><addsrcrecordid>eNqNi8EKgkAQQL10iOofxg8I1ML7ujvmku7I7IjkRSS2U5Rg_08UfUCnB4_31tHQ1cLKk7MaDApqseSgQanIgHIG_MULNlASQ6tYrKrBWK8rxScEKqGlHvmjhG3RfW-H0hOft9HqNt2XsPtxE8Uliq72YX6OYZmna3iE1zioLMnS5JineXH4p3kDgbcyKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ULTRASONIC DETECTION METHOD AND SYSTEM FOR PARTIAL DISCHARGE OF POWER DISTRIBUTION NETWORK</title><source>esp@cenet</source><creator>WANG, Jin ; ZHANG, Guangdong ; HE, Hongtai ; XIONG, Peng ; LIU, Kang ; HE, Weifeng ; ZHANG, Fagang ; BAI, Wenyuan ; XUE, Ling ; ZHANG, Yugang ; QIN, Yuanxun ; ZHANG, Taoyun ; HUANG, Zhiyong ; GUI, Feifei</creator><creatorcontrib>WANG, Jin ; ZHANG, Guangdong ; HE, Hongtai ; XIONG, Peng ; LIU, Kang ; HE, Weifeng ; ZHANG, Fagang ; BAI, Wenyuan ; XUE, Ling ; ZHANG, Yugang ; QIN, Yuanxun ; ZHANG, Taoyun ; HUANG, Zhiyong ; GUI, Feifei</creatorcontrib><description>The present invention relates to a deep learning-based power distribution network partial discharge ultrasonic test method and system. The method comprises: training a neural network model; converting an ultrasonic signal of a partial discharge defect of a power distribution network device to be tested into Mel Frequency Cepstral data; inputting the Mel Frequency Cepstral data into a periodic neural network layer for learning to obtain a first feature; inputting an image of the partial discharge defect of the power distribution network device to be tested into a convolutional neural network layer for learning to obtain a second feature; linearly stitching the first feature and the second feature to obtain a third feature; and inputting the third feature into a multi-layer full connection layer to obtain a test result of the power distribution network device to be tested. Compared with the existing manual tests, the test method and system provided in the present invention are more efficient and accurate.</description><language>eng</language><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220727&amp;DB=EPODOC&amp;CC=ZA&amp;NR=202104616B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220727&amp;DB=EPODOC&amp;CC=ZA&amp;NR=202104616B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG, Jin</creatorcontrib><creatorcontrib>ZHANG, Guangdong</creatorcontrib><creatorcontrib>HE, Hongtai</creatorcontrib><creatorcontrib>XIONG, Peng</creatorcontrib><creatorcontrib>LIU, Kang</creatorcontrib><creatorcontrib>HE, Weifeng</creatorcontrib><creatorcontrib>ZHANG, Fagang</creatorcontrib><creatorcontrib>BAI, Wenyuan</creatorcontrib><creatorcontrib>XUE, Ling</creatorcontrib><creatorcontrib>ZHANG, Yugang</creatorcontrib><creatorcontrib>QIN, Yuanxun</creatorcontrib><creatorcontrib>ZHANG, Taoyun</creatorcontrib><creatorcontrib>HUANG, Zhiyong</creatorcontrib><creatorcontrib>GUI, Feifei</creatorcontrib><title>ULTRASONIC DETECTION METHOD AND SYSTEM FOR PARTIAL DISCHARGE OF POWER DISTRIBUTION NETWORK</title><description>The present invention relates to a deep learning-based power distribution network partial discharge ultrasonic test method and system. The method comprises: training a neural network model; converting an ultrasonic signal of a partial discharge defect of a power distribution network device to be tested into Mel Frequency Cepstral data; inputting the Mel Frequency Cepstral data into a periodic neural network layer for learning to obtain a first feature; inputting an image of the partial discharge defect of the power distribution network device to be tested into a convolutional neural network layer for learning to obtain a second feature; linearly stitching the first feature and the second feature to obtain a third feature; and inputting the third feature into a multi-layer full connection layer to obtain a test result of the power distribution network device to be tested. Compared with the existing manual tests, the test method and system provided in the present invention are more efficient and accurate.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKgkAQQL10iOofxg8I1ML7ujvmku7I7IjkRSS2U5Rg_08UfUCnB4_31tHQ1cLKk7MaDApqseSgQanIgHIG_MULNlASQ6tYrKrBWK8rxScEKqGlHvmjhG3RfW-H0hOft9HqNt2XsPtxE8Uliq72YX6OYZmna3iE1zioLMnS5JineXH4p3kDgbcyKQ</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>WANG, Jin</creator><creator>ZHANG, Guangdong</creator><creator>HE, Hongtai</creator><creator>XIONG, Peng</creator><creator>LIU, Kang</creator><creator>HE, Weifeng</creator><creator>ZHANG, Fagang</creator><creator>BAI, Wenyuan</creator><creator>XUE, Ling</creator><creator>ZHANG, Yugang</creator><creator>QIN, Yuanxun</creator><creator>ZHANG, Taoyun</creator><creator>HUANG, Zhiyong</creator><creator>GUI, Feifei</creator><scope>EVB</scope></search><sort><creationdate>20220727</creationdate><title>ULTRASONIC DETECTION METHOD AND SYSTEM FOR PARTIAL DISCHARGE OF POWER DISTRIBUTION NETWORK</title><author>WANG, Jin ; ZHANG, Guangdong ; HE, Hongtai ; XIONG, Peng ; LIU, Kang ; HE, Weifeng ; ZHANG, Fagang ; BAI, Wenyuan ; XUE, Ling ; ZHANG, Yugang ; QIN, Yuanxun ; ZHANG, Taoyun ; HUANG, Zhiyong ; GUI, Feifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_ZA202104616B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>WANG, Jin</creatorcontrib><creatorcontrib>ZHANG, Guangdong</creatorcontrib><creatorcontrib>HE, Hongtai</creatorcontrib><creatorcontrib>XIONG, Peng</creatorcontrib><creatorcontrib>LIU, Kang</creatorcontrib><creatorcontrib>HE, Weifeng</creatorcontrib><creatorcontrib>ZHANG, Fagang</creatorcontrib><creatorcontrib>BAI, Wenyuan</creatorcontrib><creatorcontrib>XUE, Ling</creatorcontrib><creatorcontrib>ZHANG, Yugang</creatorcontrib><creatorcontrib>QIN, Yuanxun</creatorcontrib><creatorcontrib>ZHANG, Taoyun</creatorcontrib><creatorcontrib>HUANG, Zhiyong</creatorcontrib><creatorcontrib>GUI, Feifei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG, Jin</au><au>ZHANG, Guangdong</au><au>HE, Hongtai</au><au>XIONG, Peng</au><au>LIU, Kang</au><au>HE, Weifeng</au><au>ZHANG, Fagang</au><au>BAI, Wenyuan</au><au>XUE, Ling</au><au>ZHANG, Yugang</au><au>QIN, Yuanxun</au><au>ZHANG, Taoyun</au><au>HUANG, Zhiyong</au><au>GUI, Feifei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ULTRASONIC DETECTION METHOD AND SYSTEM FOR PARTIAL DISCHARGE OF POWER DISTRIBUTION NETWORK</title><date>2022-07-27</date><risdate>2022</risdate><abstract>The present invention relates to a deep learning-based power distribution network partial discharge ultrasonic test method and system. The method comprises: training a neural network model; converting an ultrasonic signal of a partial discharge defect of a power distribution network device to be tested into Mel Frequency Cepstral data; inputting the Mel Frequency Cepstral data into a periodic neural network layer for learning to obtain a first feature; inputting an image of the partial discharge defect of the power distribution network device to be tested into a convolutional neural network layer for learning to obtain a second feature; linearly stitching the first feature and the second feature to obtain a third feature; and inputting the third feature into a multi-layer full connection layer to obtain a test result of the power distribution network device to be tested. Compared with the existing manual tests, the test method and system provided in the present invention are more efficient and accurate.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_ZA202104616B
source esp@cenet
title ULTRASONIC DETECTION METHOD AND SYSTEM FOR PARTIAL DISCHARGE OF POWER DISTRIBUTION NETWORK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG,%20Jin&rft.date=2022-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EZA202104616B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true