SYSTEM AND METHOD FOR SPATIAL SALIENCY EXPLANATION FOR TIME SERIES MODELS
Example aspects include techniques for spatial saliency explanation for Time Series machine learning models. These techniques may include identifying, based on a token-based importance method, a plurality of tokens of a predefined importance to a machine learning (ML) inference. In addition, the tec...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LOHIA, Pranay Kumar PANWAR, Naveen PATRO, Badri Narayana |
description | Example aspects include techniques for spatial saliency explanation for Time Series machine learning models. These techniques may include identifying, based on a token-based importance method, a plurality of tokens of a predefined importance to a machine learning (ML) inference. In addition, the techniques may generating frequency distribution information based on the plurality of tokens of the predefined importance, and generating, based on the frequency distribution information, quantile information for the plurality' of tokens of a predefined importance. Further, the techniques may include calculating spatial saliency information based on the frequency distribution information and quantile information, the spatial saliency information including a spatial saliency value for a. quantile of the quantile information, and presenting the spatial saliency information via a graphical user interface.
Des aspects donnés à titre d'exemple comprennent des techniques d'explication de relief spatial pour des modèles d'apprentissage automatique de série chronologique. Ces techniques peuvent consister à identifier, sur la base d'un procédé d'importance basé sur un jeton, une pluralité de jetons d'une importance prédéfinie par rapport à une inférence d'apprentissage automatique (ML). De plus, les techniques peuvent générer des informations de distribution de fréquence sur la base de la pluralité de jetons de l'importance prédéfinie et générer, sur la base des informations de distribution de fréquence, des informations de quantile pour la pluralité de jetons d'une importance prédéfinie. En outre, les techniques peuvent consister à calculer des informations de relief spatial sur la base des informations de distribution de fréquence et des informations de quantile, les informations de relief spatial comprenant une valeur de relief spatial pour un quantile des informations de quantile, et à présenter les informations de relief spatial par le biais d'une interface utilisateur graphique. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2024163593A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2024163593A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2024163593A13</originalsourceid><addsrcrecordid>eNrjZPAMjgwOcfVVcPRzUfB1DfHwd1Fw8w9SCA5wDPF09FEIdvTxdPVzjlRwjQjwcfQDCvr7gRWEePq6KgS7Bnm6Biv4-ru4-gTzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL4cH8jAyMTQzNjU0tjR0Nj4lQBAOk1LhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR SPATIAL SALIENCY EXPLANATION FOR TIME SERIES MODELS</title><source>esp@cenet</source><creator>LOHIA, Pranay Kumar ; PANWAR, Naveen ; PATRO, Badri Narayana</creator><creatorcontrib>LOHIA, Pranay Kumar ; PANWAR, Naveen ; PATRO, Badri Narayana</creatorcontrib><description>Example aspects include techniques for spatial saliency explanation for Time Series machine learning models. These techniques may include identifying, based on a token-based importance method, a plurality of tokens of a predefined importance to a machine learning (ML) inference. In addition, the techniques may generating frequency distribution information based on the plurality of tokens of the predefined importance, and generating, based on the frequency distribution information, quantile information for the plurality' of tokens of a predefined importance. Further, the techniques may include calculating spatial saliency information based on the frequency distribution information and quantile information, the spatial saliency information including a spatial saliency value for a. quantile of the quantile information, and presenting the spatial saliency information via a graphical user interface.
Des aspects donnés à titre d'exemple comprennent des techniques d'explication de relief spatial pour des modèles d'apprentissage automatique de série chronologique. Ces techniques peuvent consister à identifier, sur la base d'un procédé d'importance basé sur un jeton, une pluralité de jetons d'une importance prédéfinie par rapport à une inférence d'apprentissage automatique (ML). De plus, les techniques peuvent générer des informations de distribution de fréquence sur la base de la pluralité de jetons de l'importance prédéfinie et générer, sur la base des informations de distribution de fréquence, des informations de quantile pour la pluralité de jetons d'une importance prédéfinie. En outre, les techniques peuvent consister à calculer des informations de relief spatial sur la base des informations de distribution de fréquence et des informations de quantile, les informations de relief spatial comprenant une valeur de relief spatial pour un quantile des informations de quantile, et à présenter les informations de relief spatial par le biais d'une interface utilisateur graphique.</description><language>eng ; fre</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240808&DB=EPODOC&CC=WO&NR=2024163593A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240808&DB=EPODOC&CC=WO&NR=2024163593A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LOHIA, Pranay Kumar</creatorcontrib><creatorcontrib>PANWAR, Naveen</creatorcontrib><creatorcontrib>PATRO, Badri Narayana</creatorcontrib><title>SYSTEM AND METHOD FOR SPATIAL SALIENCY EXPLANATION FOR TIME SERIES MODELS</title><description>Example aspects include techniques for spatial saliency explanation for Time Series machine learning models. These techniques may include identifying, based on a token-based importance method, a plurality of tokens of a predefined importance to a machine learning (ML) inference. In addition, the techniques may generating frequency distribution information based on the plurality of tokens of the predefined importance, and generating, based on the frequency distribution information, quantile information for the plurality' of tokens of a predefined importance. Further, the techniques may include calculating spatial saliency information based on the frequency distribution information and quantile information, the spatial saliency information including a spatial saliency value for a. quantile of the quantile information, and presenting the spatial saliency information via a graphical user interface.
Des aspects donnés à titre d'exemple comprennent des techniques d'explication de relief spatial pour des modèles d'apprentissage automatique de série chronologique. Ces techniques peuvent consister à identifier, sur la base d'un procédé d'importance basé sur un jeton, une pluralité de jetons d'une importance prédéfinie par rapport à une inférence d'apprentissage automatique (ML). De plus, les techniques peuvent générer des informations de distribution de fréquence sur la base de la pluralité de jetons de l'importance prédéfinie et générer, sur la base des informations de distribution de fréquence, des informations de quantile pour la pluralité de jetons d'une importance prédéfinie. En outre, les techniques peuvent consister à calculer des informations de relief spatial sur la base des informations de distribution de fréquence et des informations de quantile, les informations de relief spatial comprenant une valeur de relief spatial pour un quantile des informations de quantile, et à présenter les informations de relief spatial par le biais d'une interface utilisateur graphique.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAMjgwOcfVVcPRzUfB1DfHwd1Fw8w9SCA5wDPF09FEIdvTxdPVzjlRwjQjwcfQDCvr7gRWEePq6KgS7Bnm6Biv4-ru4-gTzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL4cH8jAyMTQzNjU0tjR0Nj4lQBAOk1LhQ</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>LOHIA, Pranay Kumar</creator><creator>PANWAR, Naveen</creator><creator>PATRO, Badri Narayana</creator><scope>EVB</scope></search><sort><creationdate>20240808</creationdate><title>SYSTEM AND METHOD FOR SPATIAL SALIENCY EXPLANATION FOR TIME SERIES MODELS</title><author>LOHIA, Pranay Kumar ; PANWAR, Naveen ; PATRO, Badri Narayana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2024163593A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LOHIA, Pranay Kumar</creatorcontrib><creatorcontrib>PANWAR, Naveen</creatorcontrib><creatorcontrib>PATRO, Badri Narayana</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LOHIA, Pranay Kumar</au><au>PANWAR, Naveen</au><au>PATRO, Badri Narayana</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR SPATIAL SALIENCY EXPLANATION FOR TIME SERIES MODELS</title><date>2024-08-08</date><risdate>2024</risdate><abstract>Example aspects include techniques for spatial saliency explanation for Time Series machine learning models. These techniques may include identifying, based on a token-based importance method, a plurality of tokens of a predefined importance to a machine learning (ML) inference. In addition, the techniques may generating frequency distribution information based on the plurality of tokens of the predefined importance, and generating, based on the frequency distribution information, quantile information for the plurality' of tokens of a predefined importance. Further, the techniques may include calculating spatial saliency information based on the frequency distribution information and quantile information, the spatial saliency information including a spatial saliency value for a. quantile of the quantile information, and presenting the spatial saliency information via a graphical user interface.
Des aspects donnés à titre d'exemple comprennent des techniques d'explication de relief spatial pour des modèles d'apprentissage automatique de série chronologique. Ces techniques peuvent consister à identifier, sur la base d'un procédé d'importance basé sur un jeton, une pluralité de jetons d'une importance prédéfinie par rapport à une inférence d'apprentissage automatique (ML). De plus, les techniques peuvent générer des informations de distribution de fréquence sur la base de la pluralité de jetons de l'importance prédéfinie et générer, sur la base des informations de distribution de fréquence, des informations de quantile pour la pluralité de jetons d'une importance prédéfinie. En outre, les techniques peuvent consister à calculer des informations de relief spatial sur la base des informations de distribution de fréquence et des informations de quantile, les informations de relief spatial comprenant une valeur de relief spatial pour un quantile des informations de quantile, et à présenter les informations de relief spatial par le biais d'une interface utilisateur graphique.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre |
recordid | cdi_epo_espacenet_WO2024163593A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | SYSTEM AND METHOD FOR SPATIAL SALIENCY EXPLANATION FOR TIME SERIES MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LOHIA,%20Pranay%20Kumar&rft.date=2024-08-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2024163593A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |